Properties

Label 6664.2.a.l.1.3
Level $6664$
Weight $2$
Character 6664.1
Self dual yes
Analytic conductor $53.212$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6664,2,Mod(1,6664)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6664.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6664, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6664 = 2^{3} \cdot 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6664.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,3,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(53.2123079070\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.229.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 4x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 952)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.86081\) of defining polynomial
Character \(\chi\) \(=\) 6664.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.86081 q^{3} +0.462598 q^{5} +5.18421 q^{9} -2.00000 q^{11} -6.64681 q^{13} +1.32340 q^{15} +1.00000 q^{17} -4.64681 q^{19} -5.72161 q^{23} -4.78600 q^{25} +6.24860 q^{27} +0.796415 q^{29} -0.184210 q^{31} -5.72161 q^{33} -7.44322 q^{37} -19.0152 q^{39} +6.71120 q^{41} +5.50761 q^{43} +2.39821 q^{45} +5.72161 q^{47} +2.86081 q^{51} -4.33382 q^{53} -0.925197 q^{55} -13.2936 q^{57} -0.646809 q^{59} -4.86081 q^{61} -3.07480 q^{65} -15.7562 q^{67} -16.3684 q^{69} -0.556777 q^{71} +4.73202 q^{73} -13.6918 q^{75} -13.1648 q^{79} +2.32340 q^{81} +12.2188 q^{83} +0.462598 q^{85} +2.27839 q^{87} +6.36842 q^{89} -0.526989 q^{93} -2.14961 q^{95} -14.6814 q^{97} -10.3684 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{3} - q^{5} + 2 q^{9} - 6 q^{11} - 4 q^{13} - 4 q^{15} + 3 q^{17} + 2 q^{19} - 6 q^{23} - 4 q^{25} + 6 q^{27} - 4 q^{29} + 13 q^{31} - 6 q^{33} - 14 q^{39} + 5 q^{41} - 5 q^{43} + 4 q^{45} + 6 q^{47}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.86081 1.65169 0.825844 0.563899i \(-0.190699\pi\)
0.825844 + 0.563899i \(0.190699\pi\)
\(4\) 0 0
\(5\) 0.462598 0.206880 0.103440 0.994636i \(-0.467015\pi\)
0.103440 + 0.994636i \(0.467015\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 5.18421 1.72807
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) −6.64681 −1.84349 −0.921747 0.387793i \(-0.873238\pi\)
−0.921747 + 0.387793i \(0.873238\pi\)
\(14\) 0 0
\(15\) 1.32340 0.341702
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) −4.64681 −1.06605 −0.533025 0.846099i \(-0.678945\pi\)
−0.533025 + 0.846099i \(0.678945\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −5.72161 −1.19304 −0.596519 0.802599i \(-0.703450\pi\)
−0.596519 + 0.802599i \(0.703450\pi\)
\(24\) 0 0
\(25\) −4.78600 −0.957201
\(26\) 0 0
\(27\) 6.24860 1.20254
\(28\) 0 0
\(29\) 0.796415 0.147891 0.0739453 0.997262i \(-0.476441\pi\)
0.0739453 + 0.997262i \(0.476441\pi\)
\(30\) 0 0
\(31\) −0.184210 −0.0330851 −0.0165426 0.999863i \(-0.505266\pi\)
−0.0165426 + 0.999863i \(0.505266\pi\)
\(32\) 0 0
\(33\) −5.72161 −0.996005
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −7.44322 −1.22366 −0.611829 0.790990i \(-0.709566\pi\)
−0.611829 + 0.790990i \(0.709566\pi\)
\(38\) 0 0
\(39\) −19.0152 −3.04487
\(40\) 0 0
\(41\) 6.71120 1.04811 0.524057 0.851683i \(-0.324418\pi\)
0.524057 + 0.851683i \(0.324418\pi\)
\(42\) 0 0
\(43\) 5.50761 0.839903 0.419952 0.907546i \(-0.362047\pi\)
0.419952 + 0.907546i \(0.362047\pi\)
\(44\) 0 0
\(45\) 2.39821 0.357504
\(46\) 0 0
\(47\) 5.72161 0.834583 0.417291 0.908773i \(-0.362979\pi\)
0.417291 + 0.908773i \(0.362979\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 2.86081 0.400593
\(52\) 0 0
\(53\) −4.33382 −0.595295 −0.297648 0.954676i \(-0.596202\pi\)
−0.297648 + 0.954676i \(0.596202\pi\)
\(54\) 0 0
\(55\) −0.925197 −0.124754
\(56\) 0 0
\(57\) −13.2936 −1.76078
\(58\) 0 0
\(59\) −0.646809 −0.0842073 −0.0421037 0.999113i \(-0.513406\pi\)
−0.0421037 + 0.999113i \(0.513406\pi\)
\(60\) 0 0
\(61\) −4.86081 −0.622362 −0.311181 0.950351i \(-0.600725\pi\)
−0.311181 + 0.950351i \(0.600725\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.07480 −0.381382
\(66\) 0 0
\(67\) −15.7562 −1.92493 −0.962464 0.271409i \(-0.912510\pi\)
−0.962464 + 0.271409i \(0.912510\pi\)
\(68\) 0 0
\(69\) −16.3684 −1.97053
\(70\) 0 0
\(71\) −0.556777 −0.0660772 −0.0330386 0.999454i \(-0.510518\pi\)
−0.0330386 + 0.999454i \(0.510518\pi\)
\(72\) 0 0
\(73\) 4.73202 0.553842 0.276921 0.960893i \(-0.410686\pi\)
0.276921 + 0.960893i \(0.410686\pi\)
\(74\) 0 0
\(75\) −13.6918 −1.58100
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −13.1648 −1.48116 −0.740580 0.671968i \(-0.765449\pi\)
−0.740580 + 0.671968i \(0.765449\pi\)
\(80\) 0 0
\(81\) 2.32340 0.258156
\(82\) 0 0
\(83\) 12.2188 1.34119 0.670595 0.741824i \(-0.266039\pi\)
0.670595 + 0.741824i \(0.266039\pi\)
\(84\) 0 0
\(85\) 0.462598 0.0501758
\(86\) 0 0
\(87\) 2.27839 0.244269
\(88\) 0 0
\(89\) 6.36842 0.675051 0.337526 0.941316i \(-0.390410\pi\)
0.337526 + 0.941316i \(0.390410\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −0.526989 −0.0546463
\(94\) 0 0
\(95\) −2.14961 −0.220545
\(96\) 0 0
\(97\) −14.6814 −1.49067 −0.745336 0.666689i \(-0.767711\pi\)
−0.745336 + 0.666689i \(0.767711\pi\)
\(98\) 0 0
\(99\) −10.3684 −1.04207
\(100\) 0 0
\(101\) 1.59283 0.158492 0.0792462 0.996855i \(-0.474749\pi\)
0.0792462 + 0.996855i \(0.474749\pi\)
\(102\) 0 0
\(103\) 3.57201 0.351960 0.175980 0.984394i \(-0.443691\pi\)
0.175980 + 0.984394i \(0.443691\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 11.2936 1.09180 0.545898 0.837852i \(-0.316189\pi\)
0.545898 + 0.837852i \(0.316189\pi\)
\(108\) 0 0
\(109\) 10.6468 1.01978 0.509890 0.860240i \(-0.329686\pi\)
0.509890 + 0.860240i \(0.329686\pi\)
\(110\) 0 0
\(111\) −21.2936 −2.02110
\(112\) 0 0
\(113\) −10.9252 −1.02776 −0.513878 0.857863i \(-0.671792\pi\)
−0.513878 + 0.857863i \(0.671792\pi\)
\(114\) 0 0
\(115\) −2.64681 −0.246816
\(116\) 0 0
\(117\) −34.4585 −3.18569
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 19.1994 1.73116
\(124\) 0 0
\(125\) −4.52699 −0.404906
\(126\) 0 0
\(127\) −18.8310 −1.67098 −0.835491 0.549504i \(-0.814817\pi\)
−0.835491 + 0.549504i \(0.814817\pi\)
\(128\) 0 0
\(129\) 15.7562 1.38726
\(130\) 0 0
\(131\) −17.0361 −1.48845 −0.744223 0.667931i \(-0.767180\pi\)
−0.744223 + 0.667931i \(0.767180\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 2.89059 0.248783
\(136\) 0 0
\(137\) 3.80683 0.325239 0.162620 0.986689i \(-0.448006\pi\)
0.162620 + 0.986689i \(0.448006\pi\)
\(138\) 0 0
\(139\) 5.10941 0.433374 0.216687 0.976241i \(-0.430475\pi\)
0.216687 + 0.976241i \(0.430475\pi\)
\(140\) 0 0
\(141\) 16.3684 1.37847
\(142\) 0 0
\(143\) 13.2936 1.11167
\(144\) 0 0
\(145\) 0.368420 0.0305956
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −20.6724 −1.69355 −0.846777 0.531949i \(-0.821460\pi\)
−0.846777 + 0.531949i \(0.821460\pi\)
\(150\) 0 0
\(151\) 11.3580 0.924302 0.462151 0.886801i \(-0.347078\pi\)
0.462151 + 0.886801i \(0.347078\pi\)
\(152\) 0 0
\(153\) 5.18421 0.419119
\(154\) 0 0
\(155\) −0.0852153 −0.00684466
\(156\) 0 0
\(157\) 16.7368 1.33575 0.667873 0.744276i \(-0.267205\pi\)
0.667873 + 0.744276i \(0.267205\pi\)
\(158\) 0 0
\(159\) −12.3982 −0.983242
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 12.6468 0.990574 0.495287 0.868729i \(-0.335063\pi\)
0.495287 + 0.868729i \(0.335063\pi\)
\(164\) 0 0
\(165\) −2.64681 −0.206054
\(166\) 0 0
\(167\) −16.0256 −1.24010 −0.620051 0.784562i \(-0.712888\pi\)
−0.620051 + 0.784562i \(0.712888\pi\)
\(168\) 0 0
\(169\) 31.1801 2.39847
\(170\) 0 0
\(171\) −24.0900 −1.84221
\(172\) 0 0
\(173\) −1.41758 −0.107777 −0.0538884 0.998547i \(-0.517162\pi\)
−0.0538884 + 0.998547i \(0.517162\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −1.85039 −0.139084
\(178\) 0 0
\(179\) 19.2292 1.43726 0.718630 0.695393i \(-0.244770\pi\)
0.718630 + 0.695393i \(0.244770\pi\)
\(180\) 0 0
\(181\) 16.5872 1.23292 0.616460 0.787386i \(-0.288566\pi\)
0.616460 + 0.787386i \(0.288566\pi\)
\(182\) 0 0
\(183\) −13.9058 −1.02795
\(184\) 0 0
\(185\) −3.44322 −0.253151
\(186\) 0 0
\(187\) −2.00000 −0.146254
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 22.2742 1.61171 0.805854 0.592115i \(-0.201707\pi\)
0.805854 + 0.592115i \(0.201707\pi\)
\(192\) 0 0
\(193\) −3.59283 −0.258618 −0.129309 0.991604i \(-0.541276\pi\)
−0.129309 + 0.991604i \(0.541276\pi\)
\(194\) 0 0
\(195\) −8.79641 −0.629924
\(196\) 0 0
\(197\) −4.55678 −0.324657 −0.162328 0.986737i \(-0.551900\pi\)
−0.162328 + 0.986737i \(0.551900\pi\)
\(198\) 0 0
\(199\) −14.1752 −1.00486 −0.502428 0.864619i \(-0.667560\pi\)
−0.502428 + 0.864619i \(0.667560\pi\)
\(200\) 0 0
\(201\) −45.0755 −3.17938
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 3.10459 0.216834
\(206\) 0 0
\(207\) −29.6620 −2.06165
\(208\) 0 0
\(209\) 9.29362 0.642853
\(210\) 0 0
\(211\) −14.6260 −1.00689 −0.503447 0.864026i \(-0.667935\pi\)
−0.503447 + 0.864026i \(0.667935\pi\)
\(212\) 0 0
\(213\) −1.59283 −0.109139
\(214\) 0 0
\(215\) 2.54781 0.173759
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 13.5374 0.914773
\(220\) 0 0
\(221\) −6.64681 −0.447113
\(222\) 0 0
\(223\) −2.40717 −0.161196 −0.0805980 0.996747i \(-0.525683\pi\)
−0.0805980 + 0.996747i \(0.525683\pi\)
\(224\) 0 0
\(225\) −24.8116 −1.65411
\(226\) 0 0
\(227\) 29.2895 1.94401 0.972005 0.234959i \(-0.0754957\pi\)
0.972005 + 0.234959i \(0.0754957\pi\)
\(228\) 0 0
\(229\) −3.50280 −0.231471 −0.115736 0.993280i \(-0.536923\pi\)
−0.115736 + 0.993280i \(0.536923\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −12.1496 −0.795947 −0.397974 0.917397i \(-0.630286\pi\)
−0.397974 + 0.917397i \(0.630286\pi\)
\(234\) 0 0
\(235\) 2.64681 0.172659
\(236\) 0 0
\(237\) −37.6620 −2.44641
\(238\) 0 0
\(239\) −3.52844 −0.228236 −0.114118 0.993467i \(-0.536404\pi\)
−0.114118 + 0.993467i \(0.536404\pi\)
\(240\) 0 0
\(241\) 7.90582 0.509259 0.254629 0.967039i \(-0.418047\pi\)
0.254629 + 0.967039i \(0.418047\pi\)
\(242\) 0 0
\(243\) −12.0990 −0.776151
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 30.8864 1.96526
\(248\) 0 0
\(249\) 34.9557 2.21522
\(250\) 0 0
\(251\) 10.2396 0.646320 0.323160 0.946344i \(-0.395255\pi\)
0.323160 + 0.946344i \(0.395255\pi\)
\(252\) 0 0
\(253\) 11.4432 0.719429
\(254\) 0 0
\(255\) 1.32340 0.0828748
\(256\) 0 0
\(257\) 23.1648 1.44498 0.722491 0.691380i \(-0.242997\pi\)
0.722491 + 0.691380i \(0.242997\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 4.12878 0.255565
\(262\) 0 0
\(263\) −29.2936 −1.80632 −0.903161 0.429302i \(-0.858760\pi\)
−0.903161 + 0.429302i \(0.858760\pi\)
\(264\) 0 0
\(265\) −2.00482 −0.123155
\(266\) 0 0
\(267\) 18.2188 1.11497
\(268\) 0 0
\(269\) 15.2936 0.932468 0.466234 0.884661i \(-0.345610\pi\)
0.466234 + 0.884661i \(0.345610\pi\)
\(270\) 0 0
\(271\) −21.1648 −1.28567 −0.642836 0.766004i \(-0.722242\pi\)
−0.642836 + 0.766004i \(0.722242\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 9.57201 0.577214
\(276\) 0 0
\(277\) 19.5720 1.17597 0.587984 0.808873i \(-0.299922\pi\)
0.587984 + 0.808873i \(0.299922\pi\)
\(278\) 0 0
\(279\) −0.954984 −0.0571734
\(280\) 0 0
\(281\) −26.5526 −1.58400 −0.791999 0.610523i \(-0.790959\pi\)
−0.791999 + 0.610523i \(0.790959\pi\)
\(282\) 0 0
\(283\) 24.1842 1.43760 0.718801 0.695216i \(-0.244691\pi\)
0.718801 + 0.695216i \(0.244691\pi\)
\(284\) 0 0
\(285\) −6.14961 −0.364271
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −42.0007 −2.46212
\(292\) 0 0
\(293\) 18.7756 1.09688 0.548441 0.836189i \(-0.315222\pi\)
0.548441 + 0.836189i \(0.315222\pi\)
\(294\) 0 0
\(295\) −0.299213 −0.0174208
\(296\) 0 0
\(297\) −12.4972 −0.725161
\(298\) 0 0
\(299\) 38.0305 2.19936
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 4.55678 0.261780
\(304\) 0 0
\(305\) −2.24860 −0.128755
\(306\) 0 0
\(307\) −0.835165 −0.0476654 −0.0238327 0.999716i \(-0.507587\pi\)
−0.0238327 + 0.999716i \(0.507587\pi\)
\(308\) 0 0
\(309\) 10.2188 0.581328
\(310\) 0 0
\(311\) −8.55263 −0.484975 −0.242488 0.970155i \(-0.577963\pi\)
−0.242488 + 0.970155i \(0.577963\pi\)
\(312\) 0 0
\(313\) 10.0554 0.568366 0.284183 0.958770i \(-0.408278\pi\)
0.284183 + 0.958770i \(0.408278\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 17.1053 0.960727 0.480364 0.877069i \(-0.340505\pi\)
0.480364 + 0.877069i \(0.340505\pi\)
\(318\) 0 0
\(319\) −1.59283 −0.0891813
\(320\) 0 0
\(321\) 32.3088 1.80330
\(322\) 0 0
\(323\) −4.64681 −0.258555
\(324\) 0 0
\(325\) 31.8116 1.76459
\(326\) 0 0
\(327\) 30.4585 1.68436
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 6.46260 0.355217 0.177608 0.984101i \(-0.443164\pi\)
0.177608 + 0.984101i \(0.443164\pi\)
\(332\) 0 0
\(333\) −38.5872 −2.11457
\(334\) 0 0
\(335\) −7.28880 −0.398230
\(336\) 0 0
\(337\) −1.50280 −0.0818626 −0.0409313 0.999162i \(-0.513032\pi\)
−0.0409313 + 0.999162i \(0.513032\pi\)
\(338\) 0 0
\(339\) −31.2549 −1.69753
\(340\) 0 0
\(341\) 0.368420 0.0199511
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −7.57201 −0.407663
\(346\) 0 0
\(347\) 1.14401 0.0614137 0.0307069 0.999528i \(-0.490224\pi\)
0.0307069 + 0.999528i \(0.490224\pi\)
\(348\) 0 0
\(349\) −15.0748 −0.806936 −0.403468 0.914994i \(-0.632195\pi\)
−0.403468 + 0.914994i \(0.632195\pi\)
\(350\) 0 0
\(351\) −41.5333 −2.21688
\(352\) 0 0
\(353\) −2.73684 −0.145667 −0.0728337 0.997344i \(-0.523204\pi\)
−0.0728337 + 0.997344i \(0.523204\pi\)
\(354\) 0 0
\(355\) −0.257564 −0.0136701
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −27.8254 −1.46857 −0.734285 0.678842i \(-0.762482\pi\)
−0.734285 + 0.678842i \(0.762482\pi\)
\(360\) 0 0
\(361\) 2.59283 0.136465
\(362\) 0 0
\(363\) −20.0256 −1.05107
\(364\) 0 0
\(365\) 2.18903 0.114579
\(366\) 0 0
\(367\) −8.02564 −0.418935 −0.209468 0.977816i \(-0.567173\pi\)
−0.209468 + 0.977816i \(0.567173\pi\)
\(368\) 0 0
\(369\) 34.7923 1.81121
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −26.0948 −1.35114 −0.675570 0.737296i \(-0.736102\pi\)
−0.675570 + 0.737296i \(0.736102\pi\)
\(374\) 0 0
\(375\) −12.9508 −0.668778
\(376\) 0 0
\(377\) −5.29362 −0.272635
\(378\) 0 0
\(379\) −22.4376 −1.15254 −0.576272 0.817258i \(-0.695493\pi\)
−0.576272 + 0.817258i \(0.695493\pi\)
\(380\) 0 0
\(381\) −53.8719 −2.75994
\(382\) 0 0
\(383\) 13.7908 0.704678 0.352339 0.935872i \(-0.385386\pi\)
0.352339 + 0.935872i \(0.385386\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 28.5526 1.45141
\(388\) 0 0
\(389\) 33.6966 1.70849 0.854244 0.519873i \(-0.174021\pi\)
0.854244 + 0.519873i \(0.174021\pi\)
\(390\) 0 0
\(391\) −5.72161 −0.289354
\(392\) 0 0
\(393\) −48.7368 −2.45845
\(394\) 0 0
\(395\) −6.09003 −0.306423
\(396\) 0 0
\(397\) −18.9806 −0.952610 −0.476305 0.879280i \(-0.658024\pi\)
−0.476305 + 0.879280i \(0.658024\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −26.0000 −1.29838 −0.649189 0.760627i \(-0.724892\pi\)
−0.649189 + 0.760627i \(0.724892\pi\)
\(402\) 0 0
\(403\) 1.22441 0.0609922
\(404\) 0 0
\(405\) 1.07480 0.0534074
\(406\) 0 0
\(407\) 14.8864 0.737894
\(408\) 0 0
\(409\) −20.5180 −1.01455 −0.507276 0.861784i \(-0.669347\pi\)
−0.507276 + 0.861784i \(0.669347\pi\)
\(410\) 0 0
\(411\) 10.8906 0.537193
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 5.65240 0.277466
\(416\) 0 0
\(417\) 14.6170 0.715799
\(418\) 0 0
\(419\) 7.92665 0.387242 0.193621 0.981076i \(-0.437977\pi\)
0.193621 + 0.981076i \(0.437977\pi\)
\(420\) 0 0
\(421\) 23.3788 1.13941 0.569707 0.821848i \(-0.307057\pi\)
0.569707 + 0.821848i \(0.307057\pi\)
\(422\) 0 0
\(423\) 29.6620 1.44222
\(424\) 0 0
\(425\) −4.78600 −0.232155
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 38.0305 1.83613
\(430\) 0 0
\(431\) 19.8116 0.954293 0.477147 0.878824i \(-0.341671\pi\)
0.477147 + 0.878824i \(0.341671\pi\)
\(432\) 0 0
\(433\) −39.0457 −1.87642 −0.938208 0.346072i \(-0.887515\pi\)
−0.938208 + 0.346072i \(0.887515\pi\)
\(434\) 0 0
\(435\) 1.05398 0.0505344
\(436\) 0 0
\(437\) 26.5872 1.27184
\(438\) 0 0
\(439\) −23.3401 −1.11396 −0.556981 0.830525i \(-0.688040\pi\)
−0.556981 + 0.830525i \(0.688040\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 9.85039 0.468006 0.234003 0.972236i \(-0.424817\pi\)
0.234003 + 0.972236i \(0.424817\pi\)
\(444\) 0 0
\(445\) 2.94602 0.139655
\(446\) 0 0
\(447\) −59.1399 −2.79722
\(448\) 0 0
\(449\) −13.5028 −0.637236 −0.318618 0.947883i \(-0.603219\pi\)
−0.318618 + 0.947883i \(0.603219\pi\)
\(450\) 0 0
\(451\) −13.4224 −0.632036
\(452\) 0 0
\(453\) 32.4931 1.52666
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −9.21736 −0.431170 −0.215585 0.976485i \(-0.569166\pi\)
−0.215585 + 0.976485i \(0.569166\pi\)
\(458\) 0 0
\(459\) 6.24860 0.291660
\(460\) 0 0
\(461\) −7.81164 −0.363825 −0.181912 0.983315i \(-0.558229\pi\)
−0.181912 + 0.983315i \(0.558229\pi\)
\(462\) 0 0
\(463\) −27.7860 −1.29133 −0.645663 0.763623i \(-0.723419\pi\)
−0.645663 + 0.763623i \(0.723419\pi\)
\(464\) 0 0
\(465\) −0.243784 −0.0113052
\(466\) 0 0
\(467\) −8.45845 −0.391410 −0.195705 0.980663i \(-0.562700\pi\)
−0.195705 + 0.980663i \(0.562700\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 47.8809 2.20623
\(472\) 0 0
\(473\) −11.0152 −0.506481
\(474\) 0 0
\(475\) 22.2396 1.02042
\(476\) 0 0
\(477\) −22.4674 −1.02871
\(478\) 0 0
\(479\) −25.1905 −1.15098 −0.575491 0.817808i \(-0.695189\pi\)
−0.575491 + 0.817808i \(0.695189\pi\)
\(480\) 0 0
\(481\) 49.4737 2.25581
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −6.79160 −0.308391
\(486\) 0 0
\(487\) 11.8116 0.535237 0.267618 0.963525i \(-0.413763\pi\)
0.267618 + 0.963525i \(0.413763\pi\)
\(488\) 0 0
\(489\) 36.1801 1.63612
\(490\) 0 0
\(491\) −4.01378 −0.181139 −0.0905697 0.995890i \(-0.528869\pi\)
−0.0905697 + 0.995890i \(0.528869\pi\)
\(492\) 0 0
\(493\) 0.796415 0.0358687
\(494\) 0 0
\(495\) −4.79641 −0.215583
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 12.2784 0.549656 0.274828 0.961493i \(-0.411379\pi\)
0.274828 + 0.961493i \(0.411379\pi\)
\(500\) 0 0
\(501\) −45.8462 −2.04826
\(502\) 0 0
\(503\) 22.7022 1.01224 0.506121 0.862462i \(-0.331079\pi\)
0.506121 + 0.862462i \(0.331079\pi\)
\(504\) 0 0
\(505\) 0.736841 0.0327890
\(506\) 0 0
\(507\) 89.2001 3.96152
\(508\) 0 0
\(509\) −32.9944 −1.46245 −0.731226 0.682136i \(-0.761051\pi\)
−0.731226 + 0.682136i \(0.761051\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −29.0361 −1.28197
\(514\) 0 0
\(515\) 1.65240 0.0728136
\(516\) 0 0
\(517\) −11.4432 −0.503272
\(518\) 0 0
\(519\) −4.05543 −0.178014
\(520\) 0 0
\(521\) −21.5976 −0.946210 −0.473105 0.881006i \(-0.656867\pi\)
−0.473105 + 0.881006i \(0.656867\pi\)
\(522\) 0 0
\(523\) 36.6981 1.60470 0.802348 0.596857i \(-0.203584\pi\)
0.802348 + 0.596857i \(0.203584\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −0.184210 −0.00802432
\(528\) 0 0
\(529\) 9.73684 0.423341
\(530\) 0 0
\(531\) −3.35319 −0.145516
\(532\) 0 0
\(533\) −44.6081 −1.93219
\(534\) 0 0
\(535\) 5.22441 0.225871
\(536\) 0 0
\(537\) 55.0111 2.37390
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 16.3088 0.701172 0.350586 0.936531i \(-0.385982\pi\)
0.350586 + 0.936531i \(0.385982\pi\)
\(542\) 0 0
\(543\) 47.4529 2.03640
\(544\) 0 0
\(545\) 4.92520 0.210972
\(546\) 0 0
\(547\) 29.3836 1.25635 0.628177 0.778070i \(-0.283801\pi\)
0.628177 + 0.778070i \(0.283801\pi\)
\(548\) 0 0
\(549\) −25.1994 −1.07549
\(550\) 0 0
\(551\) −3.70079 −0.157659
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −9.85039 −0.418126
\(556\) 0 0
\(557\) 11.3353 0.480291 0.240145 0.970737i \(-0.422805\pi\)
0.240145 + 0.970737i \(0.422805\pi\)
\(558\) 0 0
\(559\) −36.6081 −1.54836
\(560\) 0 0
\(561\) −5.72161 −0.241567
\(562\) 0 0
\(563\) 0.448819 0.0189155 0.00945773 0.999955i \(-0.496989\pi\)
0.00945773 + 0.999955i \(0.496989\pi\)
\(564\) 0 0
\(565\) −5.05398 −0.212622
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −17.4868 −0.733084 −0.366542 0.930401i \(-0.619458\pi\)
−0.366542 + 0.930401i \(0.619458\pi\)
\(570\) 0 0
\(571\) 20.2701 0.848277 0.424139 0.905597i \(-0.360577\pi\)
0.424139 + 0.905597i \(0.360577\pi\)
\(572\) 0 0
\(573\) 63.7223 2.66204
\(574\) 0 0
\(575\) 27.3836 1.14198
\(576\) 0 0
\(577\) 32.5277 1.35414 0.677072 0.735917i \(-0.263249\pi\)
0.677072 + 0.735917i \(0.263249\pi\)
\(578\) 0 0
\(579\) −10.2784 −0.427155
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 8.66763 0.358977
\(584\) 0 0
\(585\) −15.9404 −0.659055
\(586\) 0 0
\(587\) −24.7577 −1.02186 −0.510929 0.859623i \(-0.670699\pi\)
−0.510929 + 0.859623i \(0.670699\pi\)
\(588\) 0 0
\(589\) 0.855989 0.0352704
\(590\) 0 0
\(591\) −13.0361 −0.536232
\(592\) 0 0
\(593\) 29.6829 1.21893 0.609465 0.792813i \(-0.291384\pi\)
0.609465 + 0.792813i \(0.291384\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −40.5526 −1.65971
\(598\) 0 0
\(599\) 22.3732 0.914146 0.457073 0.889429i \(-0.348898\pi\)
0.457073 + 0.889429i \(0.348898\pi\)
\(600\) 0 0
\(601\) 18.1801 0.741580 0.370790 0.928717i \(-0.379087\pi\)
0.370790 + 0.928717i \(0.379087\pi\)
\(602\) 0 0
\(603\) −81.6835 −3.32641
\(604\) 0 0
\(605\) −3.23819 −0.131651
\(606\) 0 0
\(607\) −0.0733538 −0.00297734 −0.00148867 0.999999i \(-0.500474\pi\)
−0.00148867 + 0.999999i \(0.500474\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −38.0305 −1.53855
\(612\) 0 0
\(613\) 30.2534 1.22192 0.610962 0.791660i \(-0.290783\pi\)
0.610962 + 0.791660i \(0.290783\pi\)
\(614\) 0 0
\(615\) 8.88163 0.358142
\(616\) 0 0
\(617\) 26.9944 1.08675 0.543377 0.839489i \(-0.317145\pi\)
0.543377 + 0.839489i \(0.317145\pi\)
\(618\) 0 0
\(619\) 28.2217 1.13433 0.567163 0.823605i \(-0.308041\pi\)
0.567163 + 0.823605i \(0.308041\pi\)
\(620\) 0 0
\(621\) −35.7521 −1.43468
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 21.8358 0.873433
\(626\) 0 0
\(627\) 26.5872 1.06179
\(628\) 0 0
\(629\) −7.44322 −0.296781
\(630\) 0 0
\(631\) 20.4238 0.813061 0.406530 0.913637i \(-0.366739\pi\)
0.406530 + 0.913637i \(0.366739\pi\)
\(632\) 0 0
\(633\) −41.8421 −1.66307
\(634\) 0 0
\(635\) −8.71120 −0.345693
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −2.88645 −0.114186
\(640\) 0 0
\(641\) −12.2784 −0.484967 −0.242484 0.970156i \(-0.577962\pi\)
−0.242484 + 0.970156i \(0.577962\pi\)
\(642\) 0 0
\(643\) 34.4328 1.35790 0.678949 0.734186i \(-0.262436\pi\)
0.678949 + 0.734186i \(0.262436\pi\)
\(644\) 0 0
\(645\) 7.28880 0.286996
\(646\) 0 0
\(647\) −17.0540 −0.670461 −0.335231 0.942136i \(-0.608814\pi\)
−0.335231 + 0.942136i \(0.608814\pi\)
\(648\) 0 0
\(649\) 1.29362 0.0507789
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −28.2396 −1.10510 −0.552551 0.833479i \(-0.686346\pi\)
−0.552551 + 0.833479i \(0.686346\pi\)
\(654\) 0 0
\(655\) −7.88085 −0.307930
\(656\) 0 0
\(657\) 24.5318 0.957077
\(658\) 0 0
\(659\) 27.6870 1.07853 0.539266 0.842135i \(-0.318702\pi\)
0.539266 + 0.842135i \(0.318702\pi\)
\(660\) 0 0
\(661\) −27.6412 −1.07512 −0.537559 0.843226i \(-0.680654\pi\)
−0.537559 + 0.843226i \(0.680654\pi\)
\(662\) 0 0
\(663\) −19.0152 −0.738490
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −4.55678 −0.176439
\(668\) 0 0
\(669\) −6.88645 −0.266245
\(670\) 0 0
\(671\) 9.72161 0.375299
\(672\) 0 0
\(673\) −38.8656 −1.49816 −0.749080 0.662480i \(-0.769504\pi\)
−0.749080 + 0.662480i \(0.769504\pi\)
\(674\) 0 0
\(675\) −29.9058 −1.15108
\(676\) 0 0
\(677\) −43.2161 −1.66093 −0.830465 0.557071i \(-0.811925\pi\)
−0.830465 + 0.557071i \(0.811925\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 83.7915 3.21090
\(682\) 0 0
\(683\) −29.9404 −1.14564 −0.572819 0.819682i \(-0.694150\pi\)
−0.572819 + 0.819682i \(0.694150\pi\)
\(684\) 0 0
\(685\) 1.76103 0.0672856
\(686\) 0 0
\(687\) −10.0208 −0.382318
\(688\) 0 0
\(689\) 28.8060 1.09742
\(690\) 0 0
\(691\) 17.8248 0.678086 0.339043 0.940771i \(-0.389897\pi\)
0.339043 + 0.940771i \(0.389897\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.36360 0.0896566
\(696\) 0 0
\(697\) 6.71120 0.254205
\(698\) 0 0
\(699\) −34.7577 −1.31466
\(700\) 0 0
\(701\) −37.0665 −1.39998 −0.699991 0.714151i \(-0.746813\pi\)
−0.699991 + 0.714151i \(0.746813\pi\)
\(702\) 0 0
\(703\) 34.5872 1.30448
\(704\) 0 0
\(705\) 7.57201 0.285178
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −21.8325 −0.819936 −0.409968 0.912100i \(-0.634460\pi\)
−0.409968 + 0.912100i \(0.634460\pi\)
\(710\) 0 0
\(711\) −68.2493 −2.55955
\(712\) 0 0
\(713\) 1.05398 0.0394718
\(714\) 0 0
\(715\) 6.14961 0.229982
\(716\) 0 0
\(717\) −10.0942 −0.376974
\(718\) 0 0
\(719\) −3.84558 −0.143416 −0.0717079 0.997426i \(-0.522845\pi\)
−0.0717079 + 0.997426i \(0.522845\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 22.6170 0.841136
\(724\) 0 0
\(725\) −3.81164 −0.141561
\(726\) 0 0
\(727\) 19.8116 0.734773 0.367387 0.930068i \(-0.380253\pi\)
0.367387 + 0.930068i \(0.380253\pi\)
\(728\) 0 0
\(729\) −41.5831 −1.54011
\(730\) 0 0
\(731\) 5.50761 0.203706
\(732\) 0 0
\(733\) −37.2853 −1.37716 −0.688582 0.725158i \(-0.741767\pi\)
−0.688582 + 0.725158i \(0.741767\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 31.5124 1.16078
\(738\) 0 0
\(739\) −11.1004 −0.408336 −0.204168 0.978936i \(-0.565449\pi\)
−0.204168 + 0.978936i \(0.565449\pi\)
\(740\) 0 0
\(741\) 88.3601 3.24599
\(742\) 0 0
\(743\) 25.1469 0.922551 0.461275 0.887257i \(-0.347392\pi\)
0.461275 + 0.887257i \(0.347392\pi\)
\(744\) 0 0
\(745\) −9.56304 −0.350363
\(746\) 0 0
\(747\) 63.3449 2.31767
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 5.89204 0.215004 0.107502 0.994205i \(-0.465715\pi\)
0.107502 + 0.994205i \(0.465715\pi\)
\(752\) 0 0
\(753\) 29.2936 1.06752
\(754\) 0 0
\(755\) 5.25420 0.191220
\(756\) 0 0
\(757\) −9.83728 −0.357542 −0.178771 0.983891i \(-0.557212\pi\)
−0.178771 + 0.983891i \(0.557212\pi\)
\(758\) 0 0
\(759\) 32.7368 1.18827
\(760\) 0 0
\(761\) 26.0513 0.944358 0.472179 0.881503i \(-0.343468\pi\)
0.472179 + 0.881503i \(0.343468\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 2.39821 0.0867074
\(766\) 0 0
\(767\) 4.29921 0.155236
\(768\) 0 0
\(769\) −21.9404 −0.791192 −0.395596 0.918425i \(-0.629462\pi\)
−0.395596 + 0.918425i \(0.629462\pi\)
\(770\) 0 0
\(771\) 66.2701 2.38666
\(772\) 0 0
\(773\) 20.9073 0.751982 0.375991 0.926623i \(-0.377302\pi\)
0.375991 + 0.926623i \(0.377302\pi\)
\(774\) 0 0
\(775\) 0.881630 0.0316691
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −31.1857 −1.11734
\(780\) 0 0
\(781\) 1.11355 0.0398461
\(782\) 0 0
\(783\) 4.97648 0.177845
\(784\) 0 0
\(785\) 7.74244 0.276339
\(786\) 0 0
\(787\) −15.3241 −0.546244 −0.273122 0.961979i \(-0.588056\pi\)
−0.273122 + 0.961979i \(0.588056\pi\)
\(788\) 0 0
\(789\) −83.8034 −2.98348
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 32.3088 1.14732
\(794\) 0 0
\(795\) −5.73539 −0.203413
\(796\) 0 0
\(797\) −31.7521 −1.12472 −0.562358 0.826894i \(-0.690106\pi\)
−0.562358 + 0.826894i \(0.690106\pi\)
\(798\) 0 0
\(799\) 5.72161 0.202416
\(800\) 0 0
\(801\) 33.0152 1.16654
\(802\) 0 0
\(803\) −9.46405 −0.333979
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 43.7521 1.54015
\(808\) 0 0
\(809\) 32.8685 1.15560 0.577798 0.816180i \(-0.303912\pi\)
0.577798 + 0.816180i \(0.303912\pi\)
\(810\) 0 0
\(811\) −2.81916 −0.0989940 −0.0494970 0.998774i \(-0.515762\pi\)
−0.0494970 + 0.998774i \(0.515762\pi\)
\(812\) 0 0
\(813\) −60.5485 −2.12353
\(814\) 0 0
\(815\) 5.85039 0.204930
\(816\) 0 0
\(817\) −25.5928 −0.895380
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −47.0249 −1.64118 −0.820590 0.571518i \(-0.806355\pi\)
−0.820590 + 0.571518i \(0.806355\pi\)
\(822\) 0 0
\(823\) −8.18836 −0.285428 −0.142714 0.989764i \(-0.545583\pi\)
−0.142714 + 0.989764i \(0.545583\pi\)
\(824\) 0 0
\(825\) 27.3836 0.953376
\(826\) 0 0
\(827\) 13.0152 0.452584 0.226292 0.974060i \(-0.427340\pi\)
0.226292 + 0.974060i \(0.427340\pi\)
\(828\) 0 0
\(829\) −23.5028 −0.816286 −0.408143 0.912918i \(-0.633824\pi\)
−0.408143 + 0.912918i \(0.633824\pi\)
\(830\) 0 0
\(831\) 55.9917 1.94233
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −7.41344 −0.256553
\(836\) 0 0
\(837\) −1.15106 −0.0397863
\(838\) 0 0
\(839\) −2.44882 −0.0845426 −0.0422713 0.999106i \(-0.513459\pi\)
−0.0422713 + 0.999106i \(0.513459\pi\)
\(840\) 0 0
\(841\) −28.3657 −0.978128
\(842\) 0 0
\(843\) −75.9619 −2.61627
\(844\) 0 0
\(845\) 14.4238 0.496195
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 69.1863 2.37447
\(850\) 0 0
\(851\) 42.5872 1.45987
\(852\) 0 0
\(853\) −38.9944 −1.33514 −0.667571 0.744546i \(-0.732666\pi\)
−0.667571 + 0.744546i \(0.732666\pi\)
\(854\) 0 0
\(855\) −11.1440 −0.381117
\(856\) 0 0
\(857\) −36.4626 −1.24554 −0.622769 0.782406i \(-0.713992\pi\)
−0.622769 + 0.782406i \(0.713992\pi\)
\(858\) 0 0
\(859\) 30.6260 1.04495 0.522473 0.852656i \(-0.325010\pi\)
0.522473 + 0.852656i \(0.325010\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 6.42095 0.218572 0.109286 0.994010i \(-0.465144\pi\)
0.109286 + 0.994010i \(0.465144\pi\)
\(864\) 0 0
\(865\) −0.655771 −0.0222969
\(866\) 0 0
\(867\) 2.86081 0.0971581
\(868\) 0 0
\(869\) 26.3297 0.893173
\(870\) 0 0
\(871\) 104.729 3.54859
\(872\) 0 0
\(873\) −76.1115 −2.57598
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 30.2880 1.02275 0.511377 0.859357i \(-0.329136\pi\)
0.511377 + 0.859357i \(0.329136\pi\)
\(878\) 0 0
\(879\) 53.7133 1.81171
\(880\) 0 0
\(881\) −32.1634 −1.08361 −0.541806 0.840504i \(-0.682259\pi\)
−0.541806 + 0.840504i \(0.682259\pi\)
\(882\) 0 0
\(883\) 53.0498 1.78527 0.892635 0.450781i \(-0.148855\pi\)
0.892635 + 0.450781i \(0.148855\pi\)
\(884\) 0 0
\(885\) −0.855989 −0.0287738
\(886\) 0 0
\(887\) 29.1094 0.977398 0.488699 0.872452i \(-0.337472\pi\)
0.488699 + 0.872452i \(0.337472\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −4.64681 −0.155674
\(892\) 0 0
\(893\) −26.5872 −0.889708
\(894\) 0 0
\(895\) 8.89541 0.297341
\(896\) 0 0
\(897\) 108.798 3.63265
\(898\) 0 0
\(899\) −0.146708 −0.00489298
\(900\) 0 0
\(901\) −4.33382 −0.144380
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 7.67323 0.255067
\(906\) 0 0
\(907\) 2.00000 0.0664089 0.0332045 0.999449i \(-0.489429\pi\)
0.0332045 + 0.999449i \(0.489429\pi\)
\(908\) 0 0
\(909\) 8.25756 0.273886
\(910\) 0 0
\(911\) 38.0125 1.25941 0.629706 0.776834i \(-0.283175\pi\)
0.629706 + 0.776834i \(0.283175\pi\)
\(912\) 0 0
\(913\) −24.4376 −0.808767
\(914\) 0 0
\(915\) −6.43281 −0.212662
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 21.8940 0.722215 0.361108 0.932524i \(-0.382399\pi\)
0.361108 + 0.932524i \(0.382399\pi\)
\(920\) 0 0
\(921\) −2.38924 −0.0787283
\(922\) 0 0
\(923\) 3.70079 0.121813
\(924\) 0 0
\(925\) 35.6233 1.17129
\(926\) 0 0
\(927\) 18.5180 0.608212
\(928\) 0 0
\(929\) −38.7506 −1.27137 −0.635683 0.771950i \(-0.719282\pi\)
−0.635683 + 0.771950i \(0.719282\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −24.4674 −0.801027
\(934\) 0 0
\(935\) −0.925197 −0.0302572
\(936\) 0 0
\(937\) −52.8685 −1.72714 −0.863570 0.504230i \(-0.831777\pi\)
−0.863570 + 0.504230i \(0.831777\pi\)
\(938\) 0 0
\(939\) 28.7666 0.938763
\(940\) 0 0
\(941\) −49.8969 −1.62659 −0.813296 0.581851i \(-0.802329\pi\)
−0.813296 + 0.581851i \(0.802329\pi\)
\(942\) 0 0
\(943\) −38.3989 −1.25044
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −60.5097 −1.96630 −0.983151 0.182795i \(-0.941486\pi\)
−0.983151 + 0.182795i \(0.941486\pi\)
\(948\) 0 0
\(949\) −31.4529 −1.02100
\(950\) 0 0
\(951\) 48.9348 1.58682
\(952\) 0 0
\(953\) 52.2839 1.69364 0.846820 0.531879i \(-0.178514\pi\)
0.846820 + 0.531879i \(0.178514\pi\)
\(954\) 0 0
\(955\) 10.3040 0.333431
\(956\) 0 0
\(957\) −4.55678 −0.147300
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −30.9661 −0.998905
\(962\) 0 0
\(963\) 58.5485 1.88670
\(964\) 0 0
\(965\) −1.66204 −0.0535029
\(966\) 0 0
\(967\) 32.6516 1.05001 0.525003 0.851101i \(-0.324064\pi\)
0.525003 + 0.851101i \(0.324064\pi\)
\(968\) 0 0
\(969\) −13.2936 −0.427053
\(970\) 0 0
\(971\) −19.0361 −0.610896 −0.305448 0.952209i \(-0.598806\pi\)
−0.305448 + 0.952209i \(0.598806\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 91.0069 2.91455
\(976\) 0 0
\(977\) 12.2922 0.393261 0.196631 0.980478i \(-0.437000\pi\)
0.196631 + 0.980478i \(0.437000\pi\)
\(978\) 0 0
\(979\) −12.7368 −0.407071
\(980\) 0 0
\(981\) 55.1953 1.76225
\(982\) 0 0
\(983\) 27.2590 0.869427 0.434714 0.900569i \(-0.356850\pi\)
0.434714 + 0.900569i \(0.356850\pi\)
\(984\) 0 0
\(985\) −2.10796 −0.0671651
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −31.5124 −1.00204
\(990\) 0 0
\(991\) −17.0956 −0.543061 −0.271530 0.962430i \(-0.587530\pi\)
−0.271530 + 0.962430i \(0.587530\pi\)
\(992\) 0 0
\(993\) 18.4882 0.586707
\(994\) 0 0
\(995\) −6.55745 −0.207885
\(996\) 0 0
\(997\) −27.2321 −0.862450 −0.431225 0.902244i \(-0.641918\pi\)
−0.431225 + 0.902244i \(0.641918\pi\)
\(998\) 0 0
\(999\) −46.5097 −1.47150
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6664.2.a.l.1.3 3
7.6 odd 2 952.2.a.d.1.1 3
21.20 even 2 8568.2.a.z.1.2 3
28.27 even 2 1904.2.a.p.1.3 3
56.13 odd 2 7616.2.a.bg.1.3 3
56.27 even 2 7616.2.a.ba.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
952.2.a.d.1.1 3 7.6 odd 2
1904.2.a.p.1.3 3 28.27 even 2
6664.2.a.l.1.3 3 1.1 even 1 trivial
7616.2.a.ba.1.1 3 56.27 even 2
7616.2.a.bg.1.3 3 56.13 odd 2
8568.2.a.z.1.2 3 21.20 even 2