Properties

Label 665.2.j
Level $665$
Weight $2$
Character orbit 665.j
Rep. character $\chi_{665}(191,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $96$
Newform subspaces $11$
Sturm bound $160$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 665 = 5 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 665.j (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 11 \)
Sturm bound: \(160\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(2\), \(3\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(665, [\chi])\).

Total New Old
Modular forms 168 96 72
Cusp forms 152 96 56
Eisenstein series 16 0 16

Trace form

\( 96 q + 4 q^{2} - 44 q^{4} + 4 q^{5} + 8 q^{6} - 24 q^{8} - 48 q^{9} + 12 q^{11} - 20 q^{12} - 4 q^{14} - 8 q^{15} - 28 q^{16} + 16 q^{17} - 16 q^{18} - 8 q^{20} - 4 q^{21} - 4 q^{23} + 4 q^{24} - 48 q^{25}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(665, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
665.2.j.a 665.j 7.c $2$ $5.310$ \(\Q(\sqrt{-3}) \) None 665.2.j.a \(-2\) \(-2\) \(1\) \(5\) $\mathrm{SU}(2)[C_{3}]$ \(q-2\zeta_{6}q^{2}+(-2+2\zeta_{6})q^{3}+(-2+2\zeta_{6})q^{4}+\cdots\)
665.2.j.b 665.j 7.c $2$ $5.310$ \(\Q(\sqrt{-3}) \) None 665.2.j.b \(0\) \(0\) \(1\) \(5\) $\mathrm{SU}(2)[C_{3}]$ \(q+(2-2\zeta_{6})q^{4}+\zeta_{6}q^{5}+(3-\zeta_{6})q^{7}+\cdots\)
665.2.j.c 665.j 7.c $2$ $5.310$ \(\Q(\sqrt{-3}) \) None 665.2.j.c \(0\) \(2\) \(1\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(2-2\zeta_{6})q^{3}+(2-2\zeta_{6})q^{4}+\zeta_{6}q^{5}+\cdots\)
665.2.j.d 665.j 7.c $2$ $5.310$ \(\Q(\sqrt{-3}) \) None 665.2.j.d \(1\) \(1\) \(-1\) \(5\) $\mathrm{SU}(2)[C_{3}]$ \(q+\zeta_{6}q^{2}+(1-\zeta_{6})q^{3}+(1-\zeta_{6})q^{4}+\cdots\)
665.2.j.e 665.j 7.c $2$ $5.310$ \(\Q(\sqrt{-3}) \) None 665.2.j.e \(2\) \(0\) \(-1\) \(-5\) $\mathrm{SU}(2)[C_{3}]$ \(q+2\zeta_{6}q^{2}+(-2+2\zeta_{6})q^{4}-\zeta_{6}q^{5}+\cdots\)
665.2.j.f 665.j 7.c $2$ $5.310$ \(\Q(\sqrt{-3}) \) None 665.2.j.f \(2\) \(0\) \(-1\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+2\zeta_{6}q^{2}+(-2+2\zeta_{6})q^{4}-\zeta_{6}q^{5}+\cdots\)
665.2.j.g 665.j 7.c $6$ $5.310$ 6.0.1415907.1 None 665.2.j.g \(-1\) \(-1\) \(-3\) \(3\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{1}+\beta _{4})q^{2}-\beta _{4}q^{3}+(-2-\beta _{2}+\cdots)q^{4}+\cdots\)
665.2.j.h 665.j 7.c $16$ $5.310$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 665.2.j.h \(-1\) \(-2\) \(-8\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{4}+\beta _{10})q^{2}+(-\beta _{6}+\beta _{8}+\beta _{9}+\cdots)q^{3}+\cdots\)
665.2.j.i 665.j 7.c $16$ $5.310$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 665.2.j.i \(-1\) \(4\) \(-8\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{1}+\beta _{3})q^{2}+(\beta _{1}-\beta _{2}-\beta _{5}-\beta _{11}+\cdots)q^{3}+\cdots\)
665.2.j.j 665.j 7.c $22$ $5.310$ None 665.2.j.j \(0\) \(5\) \(11\) \(-11\) $\mathrm{SU}(2)[C_{3}]$
665.2.j.k 665.j 7.c $24$ $5.310$ None 665.2.j.k \(4\) \(-7\) \(12\) \(0\) $\mathrm{SU}(2)[C_{3}]$

Decomposition of \(S_{2}^{\mathrm{old}}(665, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(665, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(133, [\chi])\)\(^{\oplus 2}\)