Properties

Label 656.2.n
Level $656$
Weight $2$
Character orbit 656.n
Rep. character $\chi_{656}(165,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $160$
Newform subspaces $7$
Sturm bound $168$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 656 = 2^{4} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 656.n (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 16 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 7 \)
Sturm bound: \(168\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(656, [\chi])\).

Total New Old
Modular forms 172 160 12
Cusp forms 164 160 4
Eisenstein series 8 0 8

Trace form

\( 160 q - 4 q^{4} + 8 q^{10} - 8 q^{11} + 12 q^{14} - 16 q^{15} + 12 q^{16} - 16 q^{19} - 12 q^{20} + 4 q^{22} - 4 q^{24} - 12 q^{26} - 16 q^{29} - 28 q^{30} - 40 q^{32} - 40 q^{34} - 32 q^{36} - 16 q^{37}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(656, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
656.2.n.a 656.n 16.e $2$ $5.238$ \(\Q(\sqrt{-1}) \) None 656.2.n.a \(2\) \(-4\) \(2\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-i+1)q^{2}+(2 i-2)q^{3}-2 i q^{4}+\cdots\)
656.2.n.b 656.n 16.e $2$ $5.238$ \(\Q(\sqrt{-1}) \) None 656.2.n.b \(2\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-i+1)q^{2}-2 i q^{4}+(i+1)q^{5}+\cdots\)
656.2.n.c 656.n 16.e $2$ $5.238$ \(\Q(\sqrt{-1}) \) None 656.2.n.c \(2\) \(4\) \(2\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-i+1)q^{2}+(-2 i+2)q^{3}-2 i q^{4}+\cdots\)
656.2.n.d 656.n 16.e $4$ $5.238$ \(\Q(\zeta_{12})\) None 656.2.n.d \(-4\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-\beta_1-1)q^{2}+(-\beta_1-1)q^{3}+\cdots\)
656.2.n.e 656.n 16.e $4$ $5.238$ \(\Q(i, \sqrt{7})\) None 656.2.n.e \(0\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{1}q^{2}+(-1+\beta _{3})q^{3}+(1+\beta _{2})q^{4}+\cdots\)
656.2.n.f 656.n 16.e $66$ $5.238$ None 656.2.n.f \(-2\) \(8\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{4}]$
656.2.n.g 656.n 16.e $80$ $5.238$ None 656.2.n.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{2}^{\mathrm{old}}(656, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(656, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 2}\)