Defining parameters
| Level: | \( N \) | \(=\) | \( 656 = 2^{4} \cdot 41 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 656.n (of order \(4\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 16 \) |
| Character field: | \(\Q(i)\) | ||
| Newform subspaces: | \( 7 \) | ||
| Sturm bound: | \(168\) | ||
| Trace bound: | \(3\) | ||
| Distinguishing \(T_p\): | \(3\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(656, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 172 | 160 | 12 |
| Cusp forms | 164 | 160 | 4 |
| Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(656, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 656.2.n.a | $2$ | $5.238$ | \(\Q(\sqrt{-1}) \) | None | \(2\) | \(-4\) | \(2\) | \(0\) | \(q+(-i+1)q^{2}+(2 i-2)q^{3}-2 i q^{4}+\cdots\) |
| 656.2.n.b | $2$ | $5.238$ | \(\Q(\sqrt{-1}) \) | None | \(2\) | \(0\) | \(2\) | \(0\) | \(q+(-i+1)q^{2}-2 i q^{4}+(i+1)q^{5}+\cdots\) |
| 656.2.n.c | $2$ | $5.238$ | \(\Q(\sqrt{-1}) \) | None | \(2\) | \(4\) | \(2\) | \(0\) | \(q+(-i+1)q^{2}+(-2 i+2)q^{3}-2 i q^{4}+\cdots\) |
| 656.2.n.d | $4$ | $5.238$ | \(\Q(\zeta_{12})\) | None | \(-4\) | \(-4\) | \(0\) | \(0\) | \(q+(-\beta_1-1)q^{2}+(-\beta_1-1)q^{3}+\cdots\) |
| 656.2.n.e | $4$ | $5.238$ | \(\Q(i, \sqrt{7})\) | None | \(0\) | \(-4\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}+(-1+\beta _{3})q^{3}+(1+\beta _{2})q^{4}+\cdots\) |
| 656.2.n.f | $66$ | $5.238$ | None | \(-2\) | \(8\) | \(-6\) | \(0\) | ||
| 656.2.n.g | $80$ | $5.238$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
Decomposition of \(S_{2}^{\mathrm{old}}(656, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(656, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 2}\)