Properties

Label 645.2.s
Level $645$
Weight $2$
Character orbit 645.s
Rep. character $\chi_{645}(566,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $116$
Newform subspaces $4$
Sturm bound $176$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 645 = 3 \cdot 5 \cdot 43 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 645.s (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 129 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 4 \)
Sturm bound: \(176\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(645, [\chi])\).

Total New Old
Modular forms 184 116 68
Cusp forms 168 116 52
Eisenstein series 16 0 16

Trace form

\( 116 q + 112 q^{4} + 2 q^{6} + 6 q^{7} - 10 q^{9} - 10 q^{13} + 136 q^{16} - 24 q^{19} - 8 q^{21} + 6 q^{24} - 58 q^{25} - 36 q^{28} - 6 q^{30} - 18 q^{31} + 60 q^{33} - 22 q^{36} - 6 q^{37} - 40 q^{43}+ \cdots - 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(645, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
645.2.s.a 645.s 129.h $4$ $5.150$ \(\Q(\sqrt{-3}, \sqrt{-11})\) None 645.2.s.a \(-4\) \(-2\) \(-2\) \(-3\) $\mathrm{SU}(2)[C_{6}]$ \(q-q^{2}+(-\beta _{1}+\beta _{3})q^{3}-q^{4}+(-1+\cdots)q^{5}+\cdots\)
645.2.s.b 645.s 129.h $4$ $5.150$ \(\Q(\sqrt{-3}, \sqrt{-11})\) None 645.2.s.a \(4\) \(-1\) \(2\) \(-3\) $\mathrm{SU}(2)[C_{6}]$ \(q+q^{2}-\beta _{1}q^{3}-q^{4}+\beta _{2}q^{5}-\beta _{1}q^{6}+\cdots\)
645.2.s.c 645.s 129.h $54$ $5.150$ None 645.2.s.c \(-4\) \(1\) \(27\) \(6\) $\mathrm{SU}(2)[C_{6}]$
645.2.s.d 645.s 129.h $54$ $5.150$ None 645.2.s.c \(4\) \(2\) \(-27\) \(6\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(645, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(645, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(129, [\chi])\)\(^{\oplus 2}\)