Defining parameters
Level: | \( N \) | \(=\) | \( 645 = 3 \cdot 5 \cdot 43 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 645.s (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 129 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(176\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(645, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 184 | 116 | 68 |
Cusp forms | 168 | 116 | 52 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(645, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
645.2.s.a | $4$ | $5.150$ | \(\Q(\sqrt{-3}, \sqrt{-11})\) | None | \(-4\) | \(-2\) | \(-2\) | \(-3\) | \(q-q^{2}+(-\beta _{1}+\beta _{3})q^{3}-q^{4}+(-1+\cdots)q^{5}+\cdots\) |
645.2.s.b | $4$ | $5.150$ | \(\Q(\sqrt{-3}, \sqrt{-11})\) | None | \(4\) | \(-1\) | \(2\) | \(-3\) | \(q+q^{2}-\beta _{1}q^{3}-q^{4}+\beta _{2}q^{5}-\beta _{1}q^{6}+\cdots\) |
645.2.s.c | $54$ | $5.150$ | None | \(-4\) | \(1\) | \(27\) | \(6\) | ||
645.2.s.d | $54$ | $5.150$ | None | \(4\) | \(2\) | \(-27\) | \(6\) |
Decomposition of \(S_{2}^{\mathrm{old}}(645, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(645, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(129, [\chi])\)\(^{\oplus 2}\)