Newspace parameters
| Level: | \( N \) | \(=\) | \( 6400 = 2^{8} \cdot 5^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 6400.a (trivial) |
Newform invariants
| Self dual: | yes |
| Analytic conductor: | \(51.1042572936\) |
| Analytic rank: | \(0\) |
| Dimension: | \(2\) |
| Coefficient field: | \(\Q(\zeta_{8})^+\) |
|
|
|
| Defining polynomial: |
\( x^{2} - 2 \)
|
| Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
| Coefficient ring index: | \( 2 \) |
| Twist minimal: | no (minimal twist has level 128) |
| Fricke sign: | \(-1\) |
| Sato-Tate group: | $N(\mathrm{U}(1))$ |
Embedding invariants
| Embedding label | 1.2 | ||
| Root | \(1.41421\) of defining polynomial | ||
| Character | \(\chi\) | \(=\) | 6400.1 |
$q$-expansion
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
| \(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| \(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
| \(2\) | 0 | 0 | ||||||||
| \(3\) | 2.82843 | 1.63299 | 0.816497 | − | 0.577350i | \(-0.195913\pi\) | ||||
| 0.816497 | + | 0.577350i | \(0.195913\pi\) | |||||||
| \(4\) | 0 | 0 | ||||||||
| \(5\) | 0 | 0 | ||||||||
| \(6\) | 0 | 0 | ||||||||
| \(7\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(8\) | 0 | 0 | ||||||||
| \(9\) | 5.00000 | 1.66667 | ||||||||
| \(10\) | 0 | 0 | ||||||||
| \(11\) | 2.82843 | 0.852803 | 0.426401 | − | 0.904534i | \(-0.359781\pi\) | ||||
| 0.426401 | + | 0.904534i | \(0.359781\pi\) | |||||||
| \(12\) | 0 | 0 | ||||||||
| \(13\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(14\) | 0 | 0 | ||||||||
| \(15\) | 0 | 0 | ||||||||
| \(16\) | 0 | 0 | ||||||||
| \(17\) | −6.00000 | −1.45521 | −0.727607 | − | 0.685994i | \(-0.759367\pi\) | ||||
| −0.727607 | + | 0.685994i | \(0.759367\pi\) | |||||||
| \(18\) | 0 | 0 | ||||||||
| \(19\) | 8.48528 | 1.94666 | 0.973329 | − | 0.229416i | \(-0.0736815\pi\) | ||||
| 0.973329 | + | 0.229416i | \(0.0736815\pi\) | |||||||
| \(20\) | 0 | 0 | ||||||||
| \(21\) | 0 | 0 | ||||||||
| \(22\) | 0 | 0 | ||||||||
| \(23\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(24\) | 0 | 0 | ||||||||
| \(25\) | 0 | 0 | ||||||||
| \(26\) | 0 | 0 | ||||||||
| \(27\) | 5.65685 | 1.08866 | ||||||||
| \(28\) | 0 | 0 | ||||||||
| \(29\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(30\) | 0 | 0 | ||||||||
| \(31\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(32\) | 0 | 0 | ||||||||
| \(33\) | 8.00000 | 1.39262 | ||||||||
| \(34\) | 0 | 0 | ||||||||
| \(35\) | 0 | 0 | ||||||||
| \(36\) | 0 | 0 | ||||||||
| \(37\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(38\) | 0 | 0 | ||||||||
| \(39\) | 0 | 0 | ||||||||
| \(40\) | 0 | 0 | ||||||||
| \(41\) | 6.00000 | 0.937043 | 0.468521 | − | 0.883452i | \(-0.344787\pi\) | ||||
| 0.468521 | + | 0.883452i | \(0.344787\pi\) | |||||||
| \(42\) | 0 | 0 | ||||||||
| \(43\) | 8.48528 | 1.29399 | 0.646997 | − | 0.762493i | \(-0.276025\pi\) | ||||
| 0.646997 | + | 0.762493i | \(0.276025\pi\) | |||||||
| \(44\) | 0 | 0 | ||||||||
| \(45\) | 0 | 0 | ||||||||
| \(46\) | 0 | 0 | ||||||||
| \(47\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(48\) | 0 | 0 | ||||||||
| \(49\) | −7.00000 | −1.00000 | ||||||||
| \(50\) | 0 | 0 | ||||||||
| \(51\) | −16.9706 | −2.37635 | ||||||||
| \(52\) | 0 | 0 | ||||||||
| \(53\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(54\) | 0 | 0 | ||||||||
| \(55\) | 0 | 0 | ||||||||
| \(56\) | 0 | 0 | ||||||||
| \(57\) | 24.0000 | 3.17888 | ||||||||
| \(58\) | 0 | 0 | ||||||||
| \(59\) | 14.1421 | 1.84115 | 0.920575 | − | 0.390567i | \(-0.127721\pi\) | ||||
| 0.920575 | + | 0.390567i | \(0.127721\pi\) | |||||||
| \(60\) | 0 | 0 | ||||||||
| \(61\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(62\) | 0 | 0 | ||||||||
| \(63\) | 0 | 0 | ||||||||
| \(64\) | 0 | 0 | ||||||||
| \(65\) | 0 | 0 | ||||||||
| \(66\) | 0 | 0 | ||||||||
| \(67\) | −8.48528 | −1.03664 | −0.518321 | − | 0.855186i | \(-0.673443\pi\) | ||||
| −0.518321 | + | 0.855186i | \(0.673443\pi\) | |||||||
| \(68\) | 0 | 0 | ||||||||
| \(69\) | 0 | 0 | ||||||||
| \(70\) | 0 | 0 | ||||||||
| \(71\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(72\) | 0 | 0 | ||||||||
| \(73\) | −2.00000 | −0.234082 | −0.117041 | − | 0.993127i | \(-0.537341\pi\) | ||||
| −0.117041 | + | 0.993127i | \(0.537341\pi\) | |||||||
| \(74\) | 0 | 0 | ||||||||
| \(75\) | 0 | 0 | ||||||||
| \(76\) | 0 | 0 | ||||||||
| \(77\) | 0 | 0 | ||||||||
| \(78\) | 0 | 0 | ||||||||
| \(79\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(80\) | 0 | 0 | ||||||||
| \(81\) | 1.00000 | 0.111111 | ||||||||
| \(82\) | 0 | 0 | ||||||||
| \(83\) | 2.82843 | 0.310460 | 0.155230 | − | 0.987878i | \(-0.450388\pi\) | ||||
| 0.155230 | + | 0.987878i | \(0.450388\pi\) | |||||||
| \(84\) | 0 | 0 | ||||||||
| \(85\) | 0 | 0 | ||||||||
| \(86\) | 0 | 0 | ||||||||
| \(87\) | 0 | 0 | ||||||||
| \(88\) | 0 | 0 | ||||||||
| \(89\) | 18.0000 | 1.90800 | 0.953998 | − | 0.299813i | \(-0.0969242\pi\) | ||||
| 0.953998 | + | 0.299813i | \(0.0969242\pi\) | |||||||
| \(90\) | 0 | 0 | ||||||||
| \(91\) | 0 | 0 | ||||||||
| \(92\) | 0 | 0 | ||||||||
| \(93\) | 0 | 0 | ||||||||
| \(94\) | 0 | 0 | ||||||||
| \(95\) | 0 | 0 | ||||||||
| \(96\) | 0 | 0 | ||||||||
| \(97\) | 10.0000 | 1.01535 | 0.507673 | − | 0.861550i | \(-0.330506\pi\) | ||||
| 0.507673 | + | 0.861550i | \(0.330506\pi\) | |||||||
| \(98\) | 0 | 0 | ||||||||
| \(99\) | 14.1421 | 1.42134 | ||||||||
| \(100\) | 0 | 0 | ||||||||
| \(101\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(102\) | 0 | 0 | ||||||||
| \(103\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(104\) | 0 | 0 | ||||||||
| \(105\) | 0 | 0 | ||||||||
| \(106\) | 0 | 0 | ||||||||
| \(107\) | 19.7990 | 1.91404 | 0.957020 | − | 0.290021i | \(-0.0936623\pi\) | ||||
| 0.957020 | + | 0.290021i | \(0.0936623\pi\) | |||||||
| \(108\) | 0 | 0 | ||||||||
| \(109\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(110\) | 0 | 0 | ||||||||
| \(111\) | 0 | 0 | ||||||||
| \(112\) | 0 | 0 | ||||||||
| \(113\) | −18.0000 | −1.69330 | −0.846649 | − | 0.532152i | \(-0.821383\pi\) | ||||
| −0.846649 | + | 0.532152i | \(0.821383\pi\) | |||||||
| \(114\) | 0 | 0 | ||||||||
| \(115\) | 0 | 0 | ||||||||
| \(116\) | 0 | 0 | ||||||||
| \(117\) | 0 | 0 | ||||||||
| \(118\) | 0 | 0 | ||||||||
| \(119\) | 0 | 0 | ||||||||
| \(120\) | 0 | 0 | ||||||||
| \(121\) | −3.00000 | −0.272727 | ||||||||
| \(122\) | 0 | 0 | ||||||||
| \(123\) | 16.9706 | 1.53018 | ||||||||
| \(124\) | 0 | 0 | ||||||||
| \(125\) | 0 | 0 | ||||||||
| \(126\) | 0 | 0 | ||||||||
| \(127\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(128\) | 0 | 0 | ||||||||
| \(129\) | 24.0000 | 2.11308 | ||||||||
| \(130\) | 0 | 0 | ||||||||
| \(131\) | −14.1421 | −1.23560 | −0.617802 | − | 0.786334i | \(-0.711977\pi\) | ||||
| −0.617802 | + | 0.786334i | \(0.711977\pi\) | |||||||
| \(132\) | 0 | 0 | ||||||||
| \(133\) | 0 | 0 | ||||||||
| \(134\) | 0 | 0 | ||||||||
| \(135\) | 0 | 0 | ||||||||
| \(136\) | 0 | 0 | ||||||||
| \(137\) | −6.00000 | −0.512615 | −0.256307 | − | 0.966595i | \(-0.582506\pi\) | ||||
| −0.256307 | + | 0.966595i | \(0.582506\pi\) | |||||||
| \(138\) | 0 | 0 | ||||||||
| \(139\) | −8.48528 | −0.719712 | −0.359856 | − | 0.933008i | \(-0.617174\pi\) | ||||
| −0.359856 | + | 0.933008i | \(0.617174\pi\) | |||||||
| \(140\) | 0 | 0 | ||||||||
| \(141\) | 0 | 0 | ||||||||
| \(142\) | 0 | 0 | ||||||||
| \(143\) | 0 | 0 | ||||||||
| \(144\) | 0 | 0 | ||||||||
| \(145\) | 0 | 0 | ||||||||
| \(146\) | 0 | 0 | ||||||||
| \(147\) | −19.7990 | −1.63299 | ||||||||
| \(148\) | 0 | 0 | ||||||||
| \(149\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(150\) | 0 | 0 | ||||||||
| \(151\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(152\) | 0 | 0 | ||||||||
| \(153\) | −30.0000 | −2.42536 | ||||||||
| \(154\) | 0 | 0 | ||||||||
| \(155\) | 0 | 0 | ||||||||
| \(156\) | 0 | 0 | ||||||||
| \(157\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(158\) | 0 | 0 | ||||||||
| \(159\) | 0 | 0 | ||||||||
| \(160\) | 0 | 0 | ||||||||
| \(161\) | 0 | 0 | ||||||||
| \(162\) | 0 | 0 | ||||||||
| \(163\) | 25.4558 | 1.99386 | 0.996928 | − | 0.0783260i | \(-0.0249575\pi\) | ||||
| 0.996928 | + | 0.0783260i | \(0.0249575\pi\) | |||||||
| \(164\) | 0 | 0 | ||||||||
| \(165\) | 0 | 0 | ||||||||
| \(166\) | 0 | 0 | ||||||||
| \(167\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(168\) | 0 | 0 | ||||||||
| \(169\) | −13.0000 | −1.00000 | ||||||||
| \(170\) | 0 | 0 | ||||||||
| \(171\) | 42.4264 | 3.24443 | ||||||||
| \(172\) | 0 | 0 | ||||||||
| \(173\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(174\) | 0 | 0 | ||||||||
| \(175\) | 0 | 0 | ||||||||
| \(176\) | 0 | 0 | ||||||||
| \(177\) | 40.0000 | 3.00658 | ||||||||
| \(178\) | 0 | 0 | ||||||||
| \(179\) | 19.7990 | 1.47985 | 0.739923 | − | 0.672692i | \(-0.234862\pi\) | ||||
| 0.739923 | + | 0.672692i | \(0.234862\pi\) | |||||||
| \(180\) | 0 | 0 | ||||||||
| \(181\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(182\) | 0 | 0 | ||||||||
| \(183\) | 0 | 0 | ||||||||
| \(184\) | 0 | 0 | ||||||||
| \(185\) | 0 | 0 | ||||||||
| \(186\) | 0 | 0 | ||||||||
| \(187\) | −16.9706 | −1.24101 | ||||||||
| \(188\) | 0 | 0 | ||||||||
| \(189\) | 0 | 0 | ||||||||
| \(190\) | 0 | 0 | ||||||||
| \(191\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(192\) | 0 | 0 | ||||||||
| \(193\) | −22.0000 | −1.58359 | −0.791797 | − | 0.610784i | \(-0.790854\pi\) | ||||
| −0.791797 | + | 0.610784i | \(0.790854\pi\) | |||||||
| \(194\) | 0 | 0 | ||||||||
| \(195\) | 0 | 0 | ||||||||
| \(196\) | 0 | 0 | ||||||||
| \(197\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(198\) | 0 | 0 | ||||||||
| \(199\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(200\) | 0 | 0 | ||||||||
| \(201\) | −24.0000 | −1.69283 | ||||||||
| \(202\) | 0 | 0 | ||||||||
| \(203\) | 0 | 0 | ||||||||
| \(204\) | 0 | 0 | ||||||||
| \(205\) | 0 | 0 | ||||||||
| \(206\) | 0 | 0 | ||||||||
| \(207\) | 0 | 0 | ||||||||
| \(208\) | 0 | 0 | ||||||||
| \(209\) | 24.0000 | 1.66011 | ||||||||
| \(210\) | 0 | 0 | ||||||||
| \(211\) | −25.4558 | −1.75245 | −0.876226 | − | 0.481900i | \(-0.839947\pi\) | ||||
| −0.876226 | + | 0.481900i | \(0.839947\pi\) | |||||||
| \(212\) | 0 | 0 | ||||||||
| \(213\) | 0 | 0 | ||||||||
| \(214\) | 0 | 0 | ||||||||
| \(215\) | 0 | 0 | ||||||||
| \(216\) | 0 | 0 | ||||||||
| \(217\) | 0 | 0 | ||||||||
| \(218\) | 0 | 0 | ||||||||
| \(219\) | −5.65685 | −0.382255 | ||||||||
| \(220\) | 0 | 0 | ||||||||
| \(221\) | 0 | 0 | ||||||||
| \(222\) | 0 | 0 | ||||||||
| \(223\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(224\) | 0 | 0 | ||||||||
| \(225\) | 0 | 0 | ||||||||
| \(226\) | 0 | 0 | ||||||||
| \(227\) | 2.82843 | 0.187729 | 0.0938647 | − | 0.995585i | \(-0.470078\pi\) | ||||
| 0.0938647 | + | 0.995585i | \(0.470078\pi\) | |||||||
| \(228\) | 0 | 0 | ||||||||
| \(229\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(230\) | 0 | 0 | ||||||||
| \(231\) | 0 | 0 | ||||||||
| \(232\) | 0 | 0 | ||||||||
| \(233\) | 30.0000 | 1.96537 | 0.982683 | − | 0.185296i | \(-0.0593245\pi\) | ||||
| 0.982683 | + | 0.185296i | \(0.0593245\pi\) | |||||||
| \(234\) | 0 | 0 | ||||||||
| \(235\) | 0 | 0 | ||||||||
| \(236\) | 0 | 0 | ||||||||
| \(237\) | 0 | 0 | ||||||||
| \(238\) | 0 | 0 | ||||||||
| \(239\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(240\) | 0 | 0 | ||||||||
| \(241\) | −26.0000 | −1.67481 | −0.837404 | − | 0.546585i | \(-0.815928\pi\) | ||||
| −0.837404 | + | 0.546585i | \(0.815928\pi\) | |||||||
| \(242\) | 0 | 0 | ||||||||
| \(243\) | −14.1421 | −0.907218 | ||||||||
| \(244\) | 0 | 0 | ||||||||
| \(245\) | 0 | 0 | ||||||||
| \(246\) | 0 | 0 | ||||||||
| \(247\) | 0 | 0 | ||||||||
| \(248\) | 0 | 0 | ||||||||
| \(249\) | 8.00000 | 0.506979 | ||||||||
| \(250\) | 0 | 0 | ||||||||
| \(251\) | −31.1127 | −1.96382 | −0.981908 | − | 0.189358i | \(-0.939359\pi\) | ||||
| −0.981908 | + | 0.189358i | \(0.939359\pi\) | |||||||
| \(252\) | 0 | 0 | ||||||||
| \(253\) | 0 | 0 | ||||||||
| \(254\) | 0 | 0 | ||||||||
| \(255\) | 0 | 0 | ||||||||
| \(256\) | 0 | 0 | ||||||||
| \(257\) | 30.0000 | 1.87135 | 0.935674 | − | 0.352865i | \(-0.114792\pi\) | ||||
| 0.935674 | + | 0.352865i | \(0.114792\pi\) | |||||||
| \(258\) | 0 | 0 | ||||||||
| \(259\) | 0 | 0 | ||||||||
| \(260\) | 0 | 0 | ||||||||
| \(261\) | 0 | 0 | ||||||||
| \(262\) | 0 | 0 | ||||||||
| \(263\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(264\) | 0 | 0 | ||||||||
| \(265\) | 0 | 0 | ||||||||
| \(266\) | 0 | 0 | ||||||||
| \(267\) | 50.9117 | 3.11574 | ||||||||
| \(268\) | 0 | 0 | ||||||||
| \(269\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(270\) | 0 | 0 | ||||||||
| \(271\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(272\) | 0 | 0 | ||||||||
| \(273\) | 0 | 0 | ||||||||
| \(274\) | 0 | 0 | ||||||||
| \(275\) | 0 | 0 | ||||||||
| \(276\) | 0 | 0 | ||||||||
| \(277\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(278\) | 0 | 0 | ||||||||
| \(279\) | 0 | 0 | ||||||||
| \(280\) | 0 | 0 | ||||||||
| \(281\) | 18.0000 | 1.07379 | 0.536895 | − | 0.843649i | \(-0.319597\pi\) | ||||
| 0.536895 | + | 0.843649i | \(0.319597\pi\) | |||||||
| \(282\) | 0 | 0 | ||||||||
| \(283\) | −25.4558 | −1.51319 | −0.756596 | − | 0.653882i | \(-0.773139\pi\) | ||||
| −0.756596 | + | 0.653882i | \(0.773139\pi\) | |||||||
| \(284\) | 0 | 0 | ||||||||
| \(285\) | 0 | 0 | ||||||||
| \(286\) | 0 | 0 | ||||||||
| \(287\) | 0 | 0 | ||||||||
| \(288\) | 0 | 0 | ||||||||
| \(289\) | 19.0000 | 1.11765 | ||||||||
| \(290\) | 0 | 0 | ||||||||
| \(291\) | 28.2843 | 1.65805 | ||||||||
| \(292\) | 0 | 0 | ||||||||
| \(293\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(294\) | 0 | 0 | ||||||||
| \(295\) | 0 | 0 | ||||||||
| \(296\) | 0 | 0 | ||||||||
| \(297\) | 16.0000 | 0.928414 | ||||||||
| \(298\) | 0 | 0 | ||||||||
| \(299\) | 0 | 0 | ||||||||
| \(300\) | 0 | 0 | ||||||||
| \(301\) | 0 | 0 | ||||||||
| \(302\) | 0 | 0 | ||||||||
| \(303\) | 0 | 0 | ||||||||
| \(304\) | 0 | 0 | ||||||||
| \(305\) | 0 | 0 | ||||||||
| \(306\) | 0 | 0 | ||||||||
| \(307\) | −8.48528 | −0.484281 | −0.242140 | − | 0.970241i | \(-0.577849\pi\) | ||||
| −0.242140 | + | 0.970241i | \(0.577849\pi\) | |||||||
| \(308\) | 0 | 0 | ||||||||
| \(309\) | 0 | 0 | ||||||||
| \(310\) | 0 | 0 | ||||||||
| \(311\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(312\) | 0 | 0 | ||||||||
| \(313\) | 10.0000 | 0.565233 | 0.282617 | − | 0.959233i | \(-0.408798\pi\) | ||||
| 0.282617 | + | 0.959233i | \(0.408798\pi\) | |||||||
| \(314\) | 0 | 0 | ||||||||
| \(315\) | 0 | 0 | ||||||||
| \(316\) | 0 | 0 | ||||||||
| \(317\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(318\) | 0 | 0 | ||||||||
| \(319\) | 0 | 0 | ||||||||
| \(320\) | 0 | 0 | ||||||||
| \(321\) | 56.0000 | 3.12562 | ||||||||
| \(322\) | 0 | 0 | ||||||||
| \(323\) | −50.9117 | −2.83280 | ||||||||
| \(324\) | 0 | 0 | ||||||||
| \(325\) | 0 | 0 | ||||||||
| \(326\) | 0 | 0 | ||||||||
| \(327\) | 0 | 0 | ||||||||
| \(328\) | 0 | 0 | ||||||||
| \(329\) | 0 | 0 | ||||||||
| \(330\) | 0 | 0 | ||||||||
| \(331\) | 25.4558 | 1.39918 | 0.699590 | − | 0.714545i | \(-0.253366\pi\) | ||||
| 0.699590 | + | 0.714545i | \(0.253366\pi\) | |||||||
| \(332\) | 0 | 0 | ||||||||
| \(333\) | 0 | 0 | ||||||||
| \(334\) | 0 | 0 | ||||||||
| \(335\) | 0 | 0 | ||||||||
| \(336\) | 0 | 0 | ||||||||
| \(337\) | 14.0000 | 0.762629 | 0.381314 | − | 0.924445i | \(-0.375472\pi\) | ||||
| 0.381314 | + | 0.924445i | \(0.375472\pi\) | |||||||
| \(338\) | 0 | 0 | ||||||||
| \(339\) | −50.9117 | −2.76514 | ||||||||
| \(340\) | 0 | 0 | ||||||||
| \(341\) | 0 | 0 | ||||||||
| \(342\) | 0 | 0 | ||||||||
| \(343\) | 0 | 0 | ||||||||
| \(344\) | 0 | 0 | ||||||||
| \(345\) | 0 | 0 | ||||||||
| \(346\) | 0 | 0 | ||||||||
| \(347\) | −36.7696 | −1.97389 | −0.986947 | − | 0.161048i | \(-0.948512\pi\) | ||||
| −0.986947 | + | 0.161048i | \(0.948512\pi\) | |||||||
| \(348\) | 0 | 0 | ||||||||
| \(349\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(350\) | 0 | 0 | ||||||||
| \(351\) | 0 | 0 | ||||||||
| \(352\) | 0 | 0 | ||||||||
| \(353\) | 30.0000 | 1.59674 | 0.798369 | − | 0.602168i | \(-0.205696\pi\) | ||||
| 0.798369 | + | 0.602168i | \(0.205696\pi\) | |||||||
| \(354\) | 0 | 0 | ||||||||
| \(355\) | 0 | 0 | ||||||||
| \(356\) | 0 | 0 | ||||||||
| \(357\) | 0 | 0 | ||||||||
| \(358\) | 0 | 0 | ||||||||
| \(359\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(360\) | 0 | 0 | ||||||||
| \(361\) | 53.0000 | 2.78947 | ||||||||
| \(362\) | 0 | 0 | ||||||||
| \(363\) | −8.48528 | −0.445362 | ||||||||
| \(364\) | 0 | 0 | ||||||||
| \(365\) | 0 | 0 | ||||||||
| \(366\) | 0 | 0 | ||||||||
| \(367\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(368\) | 0 | 0 | ||||||||
| \(369\) | 30.0000 | 1.56174 | ||||||||
| \(370\) | 0 | 0 | ||||||||
| \(371\) | 0 | 0 | ||||||||
| \(372\) | 0 | 0 | ||||||||
| \(373\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(374\) | 0 | 0 | ||||||||
| \(375\) | 0 | 0 | ||||||||
| \(376\) | 0 | 0 | ||||||||
| \(377\) | 0 | 0 | ||||||||
| \(378\) | 0 | 0 | ||||||||
| \(379\) | −8.48528 | −0.435860 | −0.217930 | − | 0.975964i | \(-0.569930\pi\) | ||||
| −0.217930 | + | 0.975964i | \(0.569930\pi\) | |||||||
| \(380\) | 0 | 0 | ||||||||
| \(381\) | 0 | 0 | ||||||||
| \(382\) | 0 | 0 | ||||||||
| \(383\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(384\) | 0 | 0 | ||||||||
| \(385\) | 0 | 0 | ||||||||
| \(386\) | 0 | 0 | ||||||||
| \(387\) | 42.4264 | 2.15666 | ||||||||
| \(388\) | 0 | 0 | ||||||||
| \(389\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(390\) | 0 | 0 | ||||||||
| \(391\) | 0 | 0 | ||||||||
| \(392\) | 0 | 0 | ||||||||
| \(393\) | −40.0000 | −2.01773 | ||||||||
| \(394\) | 0 | 0 | ||||||||
| \(395\) | 0 | 0 | ||||||||
| \(396\) | 0 | 0 | ||||||||
| \(397\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(398\) | 0 | 0 | ||||||||
| \(399\) | 0 | 0 | ||||||||
| \(400\) | 0 | 0 | ||||||||
| \(401\) | 6.00000 | 0.299626 | 0.149813 | − | 0.988714i | \(-0.452133\pi\) | ||||
| 0.149813 | + | 0.988714i | \(0.452133\pi\) | |||||||
| \(402\) | 0 | 0 | ||||||||
| \(403\) | 0 | 0 | ||||||||
| \(404\) | 0 | 0 | ||||||||
| \(405\) | 0 | 0 | ||||||||
| \(406\) | 0 | 0 | ||||||||
| \(407\) | 0 | 0 | ||||||||
| \(408\) | 0 | 0 | ||||||||
| \(409\) | 22.0000 | 1.08783 | 0.543915 | − | 0.839140i | \(-0.316941\pi\) | ||||
| 0.543915 | + | 0.839140i | \(0.316941\pi\) | |||||||
| \(410\) | 0 | 0 | ||||||||
| \(411\) | −16.9706 | −0.837096 | ||||||||
| \(412\) | 0 | 0 | ||||||||
| \(413\) | 0 | 0 | ||||||||
| \(414\) | 0 | 0 | ||||||||
| \(415\) | 0 | 0 | ||||||||
| \(416\) | 0 | 0 | ||||||||
| \(417\) | −24.0000 | −1.17529 | ||||||||
| \(418\) | 0 | 0 | ||||||||
| \(419\) | −36.7696 | −1.79631 | −0.898155 | − | 0.439679i | \(-0.855092\pi\) | ||||
| −0.898155 | + | 0.439679i | \(0.855092\pi\) | |||||||
| \(420\) | 0 | 0 | ||||||||
| \(421\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(422\) | 0 | 0 | ||||||||
| \(423\) | 0 | 0 | ||||||||
| \(424\) | 0 | 0 | ||||||||
| \(425\) | 0 | 0 | ||||||||
| \(426\) | 0 | 0 | ||||||||
| \(427\) | 0 | 0 | ||||||||
| \(428\) | 0 | 0 | ||||||||
| \(429\) | 0 | 0 | ||||||||
| \(430\) | 0 | 0 | ||||||||
| \(431\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(432\) | 0 | 0 | ||||||||
| \(433\) | −38.0000 | −1.82616 | −0.913082 | − | 0.407777i | \(-0.866304\pi\) | ||||
| −0.913082 | + | 0.407777i | \(0.866304\pi\) | |||||||
| \(434\) | 0 | 0 | ||||||||
| \(435\) | 0 | 0 | ||||||||
| \(436\) | 0 | 0 | ||||||||
| \(437\) | 0 | 0 | ||||||||
| \(438\) | 0 | 0 | ||||||||
| \(439\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(440\) | 0 | 0 | ||||||||
| \(441\) | −35.0000 | −1.66667 | ||||||||
| \(442\) | 0 | 0 | ||||||||
| \(443\) | −2.82843 | −0.134383 | −0.0671913 | − | 0.997740i | \(-0.521404\pi\) | ||||
| −0.0671913 | + | 0.997740i | \(0.521404\pi\) | |||||||
| \(444\) | 0 | 0 | ||||||||
| \(445\) | 0 | 0 | ||||||||
| \(446\) | 0 | 0 | ||||||||
| \(447\) | 0 | 0 | ||||||||
| \(448\) | 0 | 0 | ||||||||
| \(449\) | −42.0000 | −1.98210 | −0.991051 | − | 0.133482i | \(-0.957384\pi\) | ||||
| −0.991051 | + | 0.133482i | \(0.957384\pi\) | |||||||
| \(450\) | 0 | 0 | ||||||||
| \(451\) | 16.9706 | 0.799113 | ||||||||
| \(452\) | 0 | 0 | ||||||||
| \(453\) | 0 | 0 | ||||||||
| \(454\) | 0 | 0 | ||||||||
| \(455\) | 0 | 0 | ||||||||
| \(456\) | 0 | 0 | ||||||||
| \(457\) | 26.0000 | 1.21623 | 0.608114 | − | 0.793849i | \(-0.291926\pi\) | ||||
| 0.608114 | + | 0.793849i | \(0.291926\pi\) | |||||||
| \(458\) | 0 | 0 | ||||||||
| \(459\) | −33.9411 | −1.58424 | ||||||||
| \(460\) | 0 | 0 | ||||||||
| \(461\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(462\) | 0 | 0 | ||||||||
| \(463\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(464\) | 0 | 0 | ||||||||
| \(465\) | 0 | 0 | ||||||||
| \(466\) | 0 | 0 | ||||||||
| \(467\) | −31.1127 | −1.43972 | −0.719862 | − | 0.694117i | \(-0.755795\pi\) | ||||
| −0.719862 | + | 0.694117i | \(0.755795\pi\) | |||||||
| \(468\) | 0 | 0 | ||||||||
| \(469\) | 0 | 0 | ||||||||
| \(470\) | 0 | 0 | ||||||||
| \(471\) | 0 | 0 | ||||||||
| \(472\) | 0 | 0 | ||||||||
| \(473\) | 24.0000 | 1.10352 | ||||||||
| \(474\) | 0 | 0 | ||||||||
| \(475\) | 0 | 0 | ||||||||
| \(476\) | 0 | 0 | ||||||||
| \(477\) | 0 | 0 | ||||||||
| \(478\) | 0 | 0 | ||||||||
| \(479\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(480\) | 0 | 0 | ||||||||
| \(481\) | 0 | 0 | ||||||||
| \(482\) | 0 | 0 | ||||||||
| \(483\) | 0 | 0 | ||||||||
| \(484\) | 0 | 0 | ||||||||
| \(485\) | 0 | 0 | ||||||||
| \(486\) | 0 | 0 | ||||||||
| \(487\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(488\) | 0 | 0 | ||||||||
| \(489\) | 72.0000 | 3.25595 | ||||||||
| \(490\) | 0 | 0 | ||||||||
| \(491\) | 14.1421 | 0.638226 | 0.319113 | − | 0.947717i | \(-0.396615\pi\) | ||||
| 0.319113 | + | 0.947717i | \(0.396615\pi\) | |||||||
| \(492\) | 0 | 0 | ||||||||
| \(493\) | 0 | 0 | ||||||||
| \(494\) | 0 | 0 | ||||||||
| \(495\) | 0 | 0 | ||||||||
| \(496\) | 0 | 0 | ||||||||
| \(497\) | 0 | 0 | ||||||||
| \(498\) | 0 | 0 | ||||||||
| \(499\) | 42.4264 | 1.89927 | 0.949633 | − | 0.313363i | \(-0.101456\pi\) | ||||
| 0.949633 | + | 0.313363i | \(0.101456\pi\) | |||||||
| \(500\) | 0 | 0 | ||||||||
| \(501\) | 0 | 0 | ||||||||
| \(502\) | 0 | 0 | ||||||||
| \(503\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(504\) | 0 | 0 | ||||||||
| \(505\) | 0 | 0 | ||||||||
| \(506\) | 0 | 0 | ||||||||
| \(507\) | −36.7696 | −1.63299 | ||||||||
| \(508\) | 0 | 0 | ||||||||
| \(509\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(510\) | 0 | 0 | ||||||||
| \(511\) | 0 | 0 | ||||||||
| \(512\) | 0 | 0 | ||||||||
| \(513\) | 48.0000 | 2.11925 | ||||||||
| \(514\) | 0 | 0 | ||||||||
| \(515\) | 0 | 0 | ||||||||
| \(516\) | 0 | 0 | ||||||||
| \(517\) | 0 | 0 | ||||||||
| \(518\) | 0 | 0 | ||||||||
| \(519\) | 0 | 0 | ||||||||
| \(520\) | 0 | 0 | ||||||||
| \(521\) | 6.00000 | 0.262865 | 0.131432 | − | 0.991325i | \(-0.458042\pi\) | ||||
| 0.131432 | + | 0.991325i | \(0.458042\pi\) | |||||||
| \(522\) | 0 | 0 | ||||||||
| \(523\) | −25.4558 | −1.11311 | −0.556553 | − | 0.830812i | \(-0.687876\pi\) | ||||
| −0.556553 | + | 0.830812i | \(0.687876\pi\) | |||||||
| \(524\) | 0 | 0 | ||||||||
| \(525\) | 0 | 0 | ||||||||
| \(526\) | 0 | 0 | ||||||||
| \(527\) | 0 | 0 | ||||||||
| \(528\) | 0 | 0 | ||||||||
| \(529\) | −23.0000 | −1.00000 | ||||||||
| \(530\) | 0 | 0 | ||||||||
| \(531\) | 70.7107 | 3.06858 | ||||||||
| \(532\) | 0 | 0 | ||||||||
| \(533\) | 0 | 0 | ||||||||
| \(534\) | 0 | 0 | ||||||||
| \(535\) | 0 | 0 | ||||||||
| \(536\) | 0 | 0 | ||||||||
| \(537\) | 56.0000 | 2.41658 | ||||||||
| \(538\) | 0 | 0 | ||||||||
| \(539\) | −19.7990 | −0.852803 | ||||||||
| \(540\) | 0 | 0 | ||||||||
| \(541\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(542\) | 0 | 0 | ||||||||
| \(543\) | 0 | 0 | ||||||||
| \(544\) | 0 | 0 | ||||||||
| \(545\) | 0 | 0 | ||||||||
| \(546\) | 0 | 0 | ||||||||
| \(547\) | −8.48528 | −0.362804 | −0.181402 | − | 0.983409i | \(-0.558064\pi\) | ||||
| −0.181402 | + | 0.983409i | \(0.558064\pi\) | |||||||
| \(548\) | 0 | 0 | ||||||||
| \(549\) | 0 | 0 | ||||||||
| \(550\) | 0 | 0 | ||||||||
| \(551\) | 0 | 0 | ||||||||
| \(552\) | 0 | 0 | ||||||||
| \(553\) | 0 | 0 | ||||||||
| \(554\) | 0 | 0 | ||||||||
| \(555\) | 0 | 0 | ||||||||
| \(556\) | 0 | 0 | ||||||||
| \(557\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(558\) | 0 | 0 | ||||||||
| \(559\) | 0 | 0 | ||||||||
| \(560\) | 0 | 0 | ||||||||
| \(561\) | −48.0000 | −2.02656 | ||||||||
| \(562\) | 0 | 0 | ||||||||
| \(563\) | 36.7696 | 1.54965 | 0.774826 | − | 0.632175i | \(-0.217837\pi\) | ||||
| 0.774826 | + | 0.632175i | \(0.217837\pi\) | |||||||
| \(564\) | 0 | 0 | ||||||||
| \(565\) | 0 | 0 | ||||||||
| \(566\) | 0 | 0 | ||||||||
| \(567\) | 0 | 0 | ||||||||
| \(568\) | 0 | 0 | ||||||||
| \(569\) | −42.0000 | −1.76073 | −0.880366 | − | 0.474295i | \(-0.842703\pi\) | ||||
| −0.880366 | + | 0.474295i | \(0.842703\pi\) | |||||||
| \(570\) | 0 | 0 | ||||||||
| \(571\) | −42.4264 | −1.77549 | −0.887745 | − | 0.460336i | \(-0.847729\pi\) | ||||
| −0.887745 | + | 0.460336i | \(0.847729\pi\) | |||||||
| \(572\) | 0 | 0 | ||||||||
| \(573\) | 0 | 0 | ||||||||
| \(574\) | 0 | 0 | ||||||||
| \(575\) | 0 | 0 | ||||||||
| \(576\) | 0 | 0 | ||||||||
| \(577\) | −34.0000 | −1.41544 | −0.707719 | − | 0.706494i | \(-0.750276\pi\) | ||||
| −0.707719 | + | 0.706494i | \(0.750276\pi\) | |||||||
| \(578\) | 0 | 0 | ||||||||
| \(579\) | −62.2254 | −2.58600 | ||||||||
| \(580\) | 0 | 0 | ||||||||
| \(581\) | 0 | 0 | ||||||||
| \(582\) | 0 | 0 | ||||||||
| \(583\) | 0 | 0 | ||||||||
| \(584\) | 0 | 0 | ||||||||
| \(585\) | 0 | 0 | ||||||||
| \(586\) | 0 | 0 | ||||||||
| \(587\) | −48.0833 | −1.98461 | −0.992304 | − | 0.123823i | \(-0.960484\pi\) | ||||
| −0.992304 | + | 0.123823i | \(0.960484\pi\) | |||||||
| \(588\) | 0 | 0 | ||||||||
| \(589\) | 0 | 0 | ||||||||
| \(590\) | 0 | 0 | ||||||||
| \(591\) | 0 | 0 | ||||||||
| \(592\) | 0 | 0 | ||||||||
| \(593\) | −18.0000 | −0.739171 | −0.369586 | − | 0.929197i | \(-0.620500\pi\) | ||||
| −0.369586 | + | 0.929197i | \(0.620500\pi\) | |||||||
| \(594\) | 0 | 0 | ||||||||
| \(595\) | 0 | 0 | ||||||||
| \(596\) | 0 | 0 | ||||||||
| \(597\) | 0 | 0 | ||||||||
| \(598\) | 0 | 0 | ||||||||
| \(599\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(600\) | 0 | 0 | ||||||||
| \(601\) | −46.0000 | −1.87638 | −0.938190 | − | 0.346122i | \(-0.887498\pi\) | ||||
| −0.938190 | + | 0.346122i | \(0.887498\pi\) | |||||||
| \(602\) | 0 | 0 | ||||||||
| \(603\) | −42.4264 | −1.72774 | ||||||||
| \(604\) | 0 | 0 | ||||||||
| \(605\) | 0 | 0 | ||||||||
| \(606\) | 0 | 0 | ||||||||
| \(607\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(608\) | 0 | 0 | ||||||||
| \(609\) | 0 | 0 | ||||||||
| \(610\) | 0 | 0 | ||||||||
| \(611\) | 0 | 0 | ||||||||
| \(612\) | 0 | 0 | ||||||||
| \(613\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(614\) | 0 | 0 | ||||||||
| \(615\) | 0 | 0 | ||||||||
| \(616\) | 0 | 0 | ||||||||
| \(617\) | 30.0000 | 1.20775 | 0.603877 | − | 0.797077i | \(-0.293622\pi\) | ||||
| 0.603877 | + | 0.797077i | \(0.293622\pi\) | |||||||
| \(618\) | 0 | 0 | ||||||||
| \(619\) | −42.4264 | −1.70526 | −0.852631 | − | 0.522514i | \(-0.824994\pi\) | ||||
| −0.852631 | + | 0.522514i | \(0.824994\pi\) | |||||||
| \(620\) | 0 | 0 | ||||||||
| \(621\) | 0 | 0 | ||||||||
| \(622\) | 0 | 0 | ||||||||
| \(623\) | 0 | 0 | ||||||||
| \(624\) | 0 | 0 | ||||||||
| \(625\) | 0 | 0 | ||||||||
| \(626\) | 0 | 0 | ||||||||
| \(627\) | 67.8823 | 2.71096 | ||||||||
| \(628\) | 0 | 0 | ||||||||
| \(629\) | 0 | 0 | ||||||||
| \(630\) | 0 | 0 | ||||||||
| \(631\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(632\) | 0 | 0 | ||||||||
| \(633\) | −72.0000 | −2.86174 | ||||||||
| \(634\) | 0 | 0 | ||||||||
| \(635\) | 0 | 0 | ||||||||
| \(636\) | 0 | 0 | ||||||||
| \(637\) | 0 | 0 | ||||||||
| \(638\) | 0 | 0 | ||||||||
| \(639\) | 0 | 0 | ||||||||
| \(640\) | 0 | 0 | ||||||||
| \(641\) | −42.0000 | −1.65890 | −0.829450 | − | 0.558581i | \(-0.811346\pi\) | ||||
| −0.829450 | + | 0.558581i | \(0.811346\pi\) | |||||||
| \(642\) | 0 | 0 | ||||||||
| \(643\) | −8.48528 | −0.334627 | −0.167313 | − | 0.985904i | \(-0.553509\pi\) | ||||
| −0.167313 | + | 0.985904i | \(0.553509\pi\) | |||||||
| \(644\) | 0 | 0 | ||||||||
| \(645\) | 0 | 0 | ||||||||
| \(646\) | 0 | 0 | ||||||||
| \(647\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(648\) | 0 | 0 | ||||||||
| \(649\) | 40.0000 | 1.57014 | ||||||||
| \(650\) | 0 | 0 | ||||||||
| \(651\) | 0 | 0 | ||||||||
| \(652\) | 0 | 0 | ||||||||
| \(653\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(654\) | 0 | 0 | ||||||||
| \(655\) | 0 | 0 | ||||||||
| \(656\) | 0 | 0 | ||||||||
| \(657\) | −10.0000 | −0.390137 | ||||||||
| \(658\) | 0 | 0 | ||||||||
| \(659\) | −48.0833 | −1.87306 | −0.936529 | − | 0.350590i | \(-0.885981\pi\) | ||||
| −0.936529 | + | 0.350590i | \(0.885981\pi\) | |||||||
| \(660\) | 0 | 0 | ||||||||
| \(661\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(662\) | 0 | 0 | ||||||||
| \(663\) | 0 | 0 | ||||||||
| \(664\) | 0 | 0 | ||||||||
| \(665\) | 0 | 0 | ||||||||
| \(666\) | 0 | 0 | ||||||||
| \(667\) | 0 | 0 | ||||||||
| \(668\) | 0 | 0 | ||||||||
| \(669\) | 0 | 0 | ||||||||
| \(670\) | 0 | 0 | ||||||||
| \(671\) | 0 | 0 | ||||||||
| \(672\) | 0 | 0 | ||||||||
| \(673\) | 10.0000 | 0.385472 | 0.192736 | − | 0.981251i | \(-0.438264\pi\) | ||||
| 0.192736 | + | 0.981251i | \(0.438264\pi\) | |||||||
| \(674\) | 0 | 0 | ||||||||
| \(675\) | 0 | 0 | ||||||||
| \(676\) | 0 | 0 | ||||||||
| \(677\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(678\) | 0 | 0 | ||||||||
| \(679\) | 0 | 0 | ||||||||
| \(680\) | 0 | 0 | ||||||||
| \(681\) | 8.00000 | 0.306561 | ||||||||
| \(682\) | 0 | 0 | ||||||||
| \(683\) | 31.1127 | 1.19049 | 0.595247 | − | 0.803543i | \(-0.297054\pi\) | ||||
| 0.595247 | + | 0.803543i | \(0.297054\pi\) | |||||||
| \(684\) | 0 | 0 | ||||||||
| \(685\) | 0 | 0 | ||||||||
| \(686\) | 0 | 0 | ||||||||
| \(687\) | 0 | 0 | ||||||||
| \(688\) | 0 | 0 | ||||||||
| \(689\) | 0 | 0 | ||||||||
| \(690\) | 0 | 0 | ||||||||
| \(691\) | −25.4558 | −0.968386 | −0.484193 | − | 0.874961i | \(-0.660887\pi\) | ||||
| −0.484193 | + | 0.874961i | \(0.660887\pi\) | |||||||
| \(692\) | 0 | 0 | ||||||||
| \(693\) | 0 | 0 | ||||||||
| \(694\) | 0 | 0 | ||||||||
| \(695\) | 0 | 0 | ||||||||
| \(696\) | 0 | 0 | ||||||||
| \(697\) | −36.0000 | −1.36360 | ||||||||
| \(698\) | 0 | 0 | ||||||||
| \(699\) | 84.8528 | 3.20943 | ||||||||
| \(700\) | 0 | 0 | ||||||||
| \(701\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(702\) | 0 | 0 | ||||||||
| \(703\) | 0 | 0 | ||||||||
| \(704\) | 0 | 0 | ||||||||
| \(705\) | 0 | 0 | ||||||||
| \(706\) | 0 | 0 | ||||||||
| \(707\) | 0 | 0 | ||||||||
| \(708\) | 0 | 0 | ||||||||
| \(709\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(710\) | 0 | 0 | ||||||||
| \(711\) | 0 | 0 | ||||||||
| \(712\) | 0 | 0 | ||||||||
| \(713\) | 0 | 0 | ||||||||
| \(714\) | 0 | 0 | ||||||||
| \(715\) | 0 | 0 | ||||||||
| \(716\) | 0 | 0 | ||||||||
| \(717\) | 0 | 0 | ||||||||
| \(718\) | 0 | 0 | ||||||||
| \(719\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(720\) | 0 | 0 | ||||||||
| \(721\) | 0 | 0 | ||||||||
| \(722\) | 0 | 0 | ||||||||
| \(723\) | −73.5391 | −2.73495 | ||||||||
| \(724\) | 0 | 0 | ||||||||
| \(725\) | 0 | 0 | ||||||||
| \(726\) | 0 | 0 | ||||||||
| \(727\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(728\) | 0 | 0 | ||||||||
| \(729\) | −43.0000 | −1.59259 | ||||||||
| \(730\) | 0 | 0 | ||||||||
| \(731\) | −50.9117 | −1.88304 | ||||||||
| \(732\) | 0 | 0 | ||||||||
| \(733\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(734\) | 0 | 0 | ||||||||
| \(735\) | 0 | 0 | ||||||||
| \(736\) | 0 | 0 | ||||||||
| \(737\) | −24.0000 | −0.884051 | ||||||||
| \(738\) | 0 | 0 | ||||||||
| \(739\) | 42.4264 | 1.56068 | 0.780340 | − | 0.625355i | \(-0.215046\pi\) | ||||
| 0.780340 | + | 0.625355i | \(0.215046\pi\) | |||||||
| \(740\) | 0 | 0 | ||||||||
| \(741\) | 0 | 0 | ||||||||
| \(742\) | 0 | 0 | ||||||||
| \(743\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(744\) | 0 | 0 | ||||||||
| \(745\) | 0 | 0 | ||||||||
| \(746\) | 0 | 0 | ||||||||
| \(747\) | 14.1421 | 0.517434 | ||||||||
| \(748\) | 0 | 0 | ||||||||
| \(749\) | 0 | 0 | ||||||||
| \(750\) | 0 | 0 | ||||||||
| \(751\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(752\) | 0 | 0 | ||||||||
| \(753\) | −88.0000 | −3.20690 | ||||||||
| \(754\) | 0 | 0 | ||||||||
| \(755\) | 0 | 0 | ||||||||
| \(756\) | 0 | 0 | ||||||||
| \(757\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(758\) | 0 | 0 | ||||||||
| \(759\) | 0 | 0 | ||||||||
| \(760\) | 0 | 0 | ||||||||
| \(761\) | 54.0000 | 1.95750 | 0.978749 | − | 0.205061i | \(-0.0657392\pi\) | ||||
| 0.978749 | + | 0.205061i | \(0.0657392\pi\) | |||||||
| \(762\) | 0 | 0 | ||||||||
| \(763\) | 0 | 0 | ||||||||
| \(764\) | 0 | 0 | ||||||||
| \(765\) | 0 | 0 | ||||||||
| \(766\) | 0 | 0 | ||||||||
| \(767\) | 0 | 0 | ||||||||
| \(768\) | 0 | 0 | ||||||||
| \(769\) | 22.0000 | 0.793340 | 0.396670 | − | 0.917961i | \(-0.370166\pi\) | ||||
| 0.396670 | + | 0.917961i | \(0.370166\pi\) | |||||||
| \(770\) | 0 | 0 | ||||||||
| \(771\) | 84.8528 | 3.05590 | ||||||||
| \(772\) | 0 | 0 | ||||||||
| \(773\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(774\) | 0 | 0 | ||||||||
| \(775\) | 0 | 0 | ||||||||
| \(776\) | 0 | 0 | ||||||||
| \(777\) | 0 | 0 | ||||||||
| \(778\) | 0 | 0 | ||||||||
| \(779\) | 50.9117 | 1.82410 | ||||||||
| \(780\) | 0 | 0 | ||||||||
| \(781\) | 0 | 0 | ||||||||
| \(782\) | 0 | 0 | ||||||||
| \(783\) | 0 | 0 | ||||||||
| \(784\) | 0 | 0 | ||||||||
| \(785\) | 0 | 0 | ||||||||
| \(786\) | 0 | 0 | ||||||||
| \(787\) | 25.4558 | 0.907403 | 0.453701 | − | 0.891154i | \(-0.350103\pi\) | ||||
| 0.453701 | + | 0.891154i | \(0.350103\pi\) | |||||||
| \(788\) | 0 | 0 | ||||||||
| \(789\) | 0 | 0 | ||||||||
| \(790\) | 0 | 0 | ||||||||
| \(791\) | 0 | 0 | ||||||||
| \(792\) | 0 | 0 | ||||||||
| \(793\) | 0 | 0 | ||||||||
| \(794\) | 0 | 0 | ||||||||
| \(795\) | 0 | 0 | ||||||||
| \(796\) | 0 | 0 | ||||||||
| \(797\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(798\) | 0 | 0 | ||||||||
| \(799\) | 0 | 0 | ||||||||
| \(800\) | 0 | 0 | ||||||||
| \(801\) | 90.0000 | 3.17999 | ||||||||
| \(802\) | 0 | 0 | ||||||||
| \(803\) | −5.65685 | −0.199626 | ||||||||
| \(804\) | 0 | 0 | ||||||||
| \(805\) | 0 | 0 | ||||||||
| \(806\) | 0 | 0 | ||||||||
| \(807\) | 0 | 0 | ||||||||
| \(808\) | 0 | 0 | ||||||||
| \(809\) | 6.00000 | 0.210949 | 0.105474 | − | 0.994422i | \(-0.466364\pi\) | ||||
| 0.105474 | + | 0.994422i | \(0.466364\pi\) | |||||||
| \(810\) | 0 | 0 | ||||||||
| \(811\) | −42.4264 | −1.48979 | −0.744896 | − | 0.667180i | \(-0.767501\pi\) | ||||
| −0.744896 | + | 0.667180i | \(0.767501\pi\) | |||||||
| \(812\) | 0 | 0 | ||||||||
| \(813\) | 0 | 0 | ||||||||
| \(814\) | 0 | 0 | ||||||||
| \(815\) | 0 | 0 | ||||||||
| \(816\) | 0 | 0 | ||||||||
| \(817\) | 72.0000 | 2.51896 | ||||||||
| \(818\) | 0 | 0 | ||||||||
| \(819\) | 0 | 0 | ||||||||
| \(820\) | 0 | 0 | ||||||||
| \(821\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(822\) | 0 | 0 | ||||||||
| \(823\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(824\) | 0 | 0 | ||||||||
| \(825\) | 0 | 0 | ||||||||
| \(826\) | 0 | 0 | ||||||||
| \(827\) | 19.7990 | 0.688478 | 0.344239 | − | 0.938882i | \(-0.388137\pi\) | ||||
| 0.344239 | + | 0.938882i | \(0.388137\pi\) | |||||||
| \(828\) | 0 | 0 | ||||||||
| \(829\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(830\) | 0 | 0 | ||||||||
| \(831\) | 0 | 0 | ||||||||
| \(832\) | 0 | 0 | ||||||||
| \(833\) | 42.0000 | 1.45521 | ||||||||
| \(834\) | 0 | 0 | ||||||||
| \(835\) | 0 | 0 | ||||||||
| \(836\) | 0 | 0 | ||||||||
| \(837\) | 0 | 0 | ||||||||
| \(838\) | 0 | 0 | ||||||||
| \(839\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(840\) | 0 | 0 | ||||||||
| \(841\) | −29.0000 | −1.00000 | ||||||||
| \(842\) | 0 | 0 | ||||||||
| \(843\) | 50.9117 | 1.75349 | ||||||||
| \(844\) | 0 | 0 | ||||||||
| \(845\) | 0 | 0 | ||||||||
| \(846\) | 0 | 0 | ||||||||
| \(847\) | 0 | 0 | ||||||||
| \(848\) | 0 | 0 | ||||||||
| \(849\) | −72.0000 | −2.47103 | ||||||||
| \(850\) | 0 | 0 | ||||||||
| \(851\) | 0 | 0 | ||||||||
| \(852\) | 0 | 0 | ||||||||
| \(853\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(854\) | 0 | 0 | ||||||||
| \(855\) | 0 | 0 | ||||||||
| \(856\) | 0 | 0 | ||||||||
| \(857\) | −54.0000 | −1.84460 | −0.922302 | − | 0.386469i | \(-0.873695\pi\) | ||||
| −0.922302 | + | 0.386469i | \(0.873695\pi\) | |||||||
| \(858\) | 0 | 0 | ||||||||
| \(859\) | −8.48528 | −0.289514 | −0.144757 | − | 0.989467i | \(-0.546240\pi\) | ||||
| −0.144757 | + | 0.989467i | \(0.546240\pi\) | |||||||
| \(860\) | 0 | 0 | ||||||||
| \(861\) | 0 | 0 | ||||||||
| \(862\) | 0 | 0 | ||||||||
| \(863\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(864\) | 0 | 0 | ||||||||
| \(865\) | 0 | 0 | ||||||||
| \(866\) | 0 | 0 | ||||||||
| \(867\) | 53.7401 | 1.82511 | ||||||||
| \(868\) | 0 | 0 | ||||||||
| \(869\) | 0 | 0 | ||||||||
| \(870\) | 0 | 0 | ||||||||
| \(871\) | 0 | 0 | ||||||||
| \(872\) | 0 | 0 | ||||||||
| \(873\) | 50.0000 | 1.69224 | ||||||||
| \(874\) | 0 | 0 | ||||||||
| \(875\) | 0 | 0 | ||||||||
| \(876\) | 0 | 0 | ||||||||
| \(877\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(878\) | 0 | 0 | ||||||||
| \(879\) | 0 | 0 | ||||||||
| \(880\) | 0 | 0 | ||||||||
| \(881\) | 18.0000 | 0.606435 | 0.303218 | − | 0.952921i | \(-0.401939\pi\) | ||||
| 0.303218 | + | 0.952921i | \(0.401939\pi\) | |||||||
| \(882\) | 0 | 0 | ||||||||
| \(883\) | 59.3970 | 1.99887 | 0.999434 | − | 0.0336527i | \(-0.0107140\pi\) | ||||
| 0.999434 | + | 0.0336527i | \(0.0107140\pi\) | |||||||
| \(884\) | 0 | 0 | ||||||||
| \(885\) | 0 | 0 | ||||||||
| \(886\) | 0 | 0 | ||||||||
| \(887\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(888\) | 0 | 0 | ||||||||
| \(889\) | 0 | 0 | ||||||||
| \(890\) | 0 | 0 | ||||||||
| \(891\) | 2.82843 | 0.0947559 | ||||||||
| \(892\) | 0 | 0 | ||||||||
| \(893\) | 0 | 0 | ||||||||
| \(894\) | 0 | 0 | ||||||||
| \(895\) | 0 | 0 | ||||||||
| \(896\) | 0 | 0 | ||||||||
| \(897\) | 0 | 0 | ||||||||
| \(898\) | 0 | 0 | ||||||||
| \(899\) | 0 | 0 | ||||||||
| \(900\) | 0 | 0 | ||||||||
| \(901\) | 0 | 0 | ||||||||
| \(902\) | 0 | 0 | ||||||||
| \(903\) | 0 | 0 | ||||||||
| \(904\) | 0 | 0 | ||||||||
| \(905\) | 0 | 0 | ||||||||
| \(906\) | 0 | 0 | ||||||||
| \(907\) | −59.3970 | −1.97224 | −0.986122 | − | 0.166022i | \(-0.946908\pi\) | ||||
| −0.986122 | + | 0.166022i | \(0.946908\pi\) | |||||||
| \(908\) | 0 | 0 | ||||||||
| \(909\) | 0 | 0 | ||||||||
| \(910\) | 0 | 0 | ||||||||
| \(911\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(912\) | 0 | 0 | ||||||||
| \(913\) | 8.00000 | 0.264761 | ||||||||
| \(914\) | 0 | 0 | ||||||||
| \(915\) | 0 | 0 | ||||||||
| \(916\) | 0 | 0 | ||||||||
| \(917\) | 0 | 0 | ||||||||
| \(918\) | 0 | 0 | ||||||||
| \(919\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(920\) | 0 | 0 | ||||||||
| \(921\) | −24.0000 | −0.790827 | ||||||||
| \(922\) | 0 | 0 | ||||||||
| \(923\) | 0 | 0 | ||||||||
| \(924\) | 0 | 0 | ||||||||
| \(925\) | 0 | 0 | ||||||||
| \(926\) | 0 | 0 | ||||||||
| \(927\) | 0 | 0 | ||||||||
| \(928\) | 0 | 0 | ||||||||
| \(929\) | 54.0000 | 1.77168 | 0.885841 | − | 0.463988i | \(-0.153582\pi\) | ||||
| 0.885841 | + | 0.463988i | \(0.153582\pi\) | |||||||
| \(930\) | 0 | 0 | ||||||||
| \(931\) | −59.3970 | −1.94666 | ||||||||
| \(932\) | 0 | 0 | ||||||||
| \(933\) | 0 | 0 | ||||||||
| \(934\) | 0 | 0 | ||||||||
| \(935\) | 0 | 0 | ||||||||
| \(936\) | 0 | 0 | ||||||||
| \(937\) | −34.0000 | −1.11073 | −0.555366 | − | 0.831606i | \(-0.687422\pi\) | ||||
| −0.555366 | + | 0.831606i | \(0.687422\pi\) | |||||||
| \(938\) | 0 | 0 | ||||||||
| \(939\) | 28.2843 | 0.923022 | ||||||||
| \(940\) | 0 | 0 | ||||||||
| \(941\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(942\) | 0 | 0 | ||||||||
| \(943\) | 0 | 0 | ||||||||
| \(944\) | 0 | 0 | ||||||||
| \(945\) | 0 | 0 | ||||||||
| \(946\) | 0 | 0 | ||||||||
| \(947\) | −53.7401 | −1.74632 | −0.873160 | − | 0.487435i | \(-0.837933\pi\) | ||||
| −0.873160 | + | 0.487435i | \(0.837933\pi\) | |||||||
| \(948\) | 0 | 0 | ||||||||
| \(949\) | 0 | 0 | ||||||||
| \(950\) | 0 | 0 | ||||||||
| \(951\) | 0 | 0 | ||||||||
| \(952\) | 0 | 0 | ||||||||
| \(953\) | 42.0000 | 1.36051 | 0.680257 | − | 0.732974i | \(-0.261868\pi\) | ||||
| 0.680257 | + | 0.732974i | \(0.261868\pi\) | |||||||
| \(954\) | 0 | 0 | ||||||||
| \(955\) | 0 | 0 | ||||||||
| \(956\) | 0 | 0 | ||||||||
| \(957\) | 0 | 0 | ||||||||
| \(958\) | 0 | 0 | ||||||||
| \(959\) | 0 | 0 | ||||||||
| \(960\) | 0 | 0 | ||||||||
| \(961\) | −31.0000 | −1.00000 | ||||||||
| \(962\) | 0 | 0 | ||||||||
| \(963\) | 98.9949 | 3.19007 | ||||||||
| \(964\) | 0 | 0 | ||||||||
| \(965\) | 0 | 0 | ||||||||
| \(966\) | 0 | 0 | ||||||||
| \(967\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(968\) | 0 | 0 | ||||||||
| \(969\) | −144.000 | −4.62595 | ||||||||
| \(970\) | 0 | 0 | ||||||||
| \(971\) | −31.1127 | −0.998454 | −0.499227 | − | 0.866471i | \(-0.666383\pi\) | ||||
| −0.499227 | + | 0.866471i | \(0.666383\pi\) | |||||||
| \(972\) | 0 | 0 | ||||||||
| \(973\) | 0 | 0 | ||||||||
| \(974\) | 0 | 0 | ||||||||
| \(975\) | 0 | 0 | ||||||||
| \(976\) | 0 | 0 | ||||||||
| \(977\) | −6.00000 | −0.191957 | −0.0959785 | − | 0.995383i | \(-0.530598\pi\) | ||||
| −0.0959785 | + | 0.995383i | \(0.530598\pi\) | |||||||
| \(978\) | 0 | 0 | ||||||||
| \(979\) | 50.9117 | 1.62714 | ||||||||
| \(980\) | 0 | 0 | ||||||||
| \(981\) | 0 | 0 | ||||||||
| \(982\) | 0 | 0 | ||||||||
| \(983\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(984\) | 0 | 0 | ||||||||
| \(985\) | 0 | 0 | ||||||||
| \(986\) | 0 | 0 | ||||||||
| \(987\) | 0 | 0 | ||||||||
| \(988\) | 0 | 0 | ||||||||
| \(989\) | 0 | 0 | ||||||||
| \(990\) | 0 | 0 | ||||||||
| \(991\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(992\) | 0 | 0 | ||||||||
| \(993\) | 72.0000 | 2.28485 | ||||||||
| \(994\) | 0 | 0 | ||||||||
| \(995\) | 0 | 0 | ||||||||
| \(996\) | 0 | 0 | ||||||||
| \(997\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(998\) | 0 | 0 | ||||||||
| \(999\) | 0 | 0 | ||||||||
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))