Defining parameters
| Level: | \( N \) | \(=\) | \( 6240 = 2^{5} \cdot 3 \cdot 5 \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 6240.ge (of order \(6\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 104 \) |
| Character field: | \(\Q(\zeta_{6})\) | ||
| Sturm bound: | \(2688\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(6240, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 2752 | 224 | 2528 |
| Cusp forms | 2624 | 224 | 2400 |
| Eisenstein series | 128 | 0 | 128 |
Decomposition of \(S_{2}^{\mathrm{new}}(6240, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(6240, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(6240, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(312, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(416, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(520, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1248, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1560, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2080, [\chi])\)\(^{\oplus 2}\)