Properties

Label 620.2.k
Level $620$
Weight $2$
Character orbit 620.k
Rep. character $\chi_{620}(63,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $180$
Newform subspaces $4$
Sturm bound $192$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 620 = 2^{2} \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 620.k (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 20 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 4 \)
Sturm bound: \(192\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(620, [\chi])\).

Total New Old
Modular forms 200 180 20
Cusp forms 184 180 4
Eisenstein series 16 0 16

Trace form

\( 180 q - 6 q^{8} - 16 q^{10} - 16 q^{12} - 4 q^{13} - 20 q^{17} + 28 q^{18} - 16 q^{21} - 16 q^{22} - 20 q^{25} - 32 q^{26} - 26 q^{28} + 16 q^{30} - 32 q^{36} + 20 q^{37} - 34 q^{38} + 24 q^{40} + 16 q^{41}+ \cdots - 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(620, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
620.2.k.a 620.k 20.e $2$ $4.951$ \(\Q(\sqrt{-1}) \) None 620.2.k.a \(-2\) \(-2\) \(2\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-i-1)q^{2}+(-i-1)q^{3}+2 i q^{4}+\cdots\)
620.2.k.b 620.k 20.e $2$ $4.951$ \(\Q(\sqrt{-1}) \) None 620.2.k.a \(-2\) \(2\) \(2\) \(4\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-i-1)q^{2}+(i+1)q^{3}+2 i q^{4}+\cdots\)
620.2.k.c 620.k 20.e $88$ $4.951$ None 620.2.k.c \(2\) \(-2\) \(-2\) \(-4\) $\mathrm{SU}(2)[C_{4}]$
620.2.k.d 620.k 20.e $88$ $4.951$ None 620.2.k.c \(2\) \(2\) \(-2\) \(4\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{2}^{\mathrm{old}}(620, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(620, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 2}\)