Properties

Label 62.2.d
Level $62$
Weight $2$
Character orbit 62.d
Rep. character $\chi_{62}(33,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $16$
Newform subspaces $2$
Sturm bound $16$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 62 = 2 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 62.d (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 31 \)
Character field: \(\Q(\zeta_{5})\)
Newform subspaces: \( 2 \)
Sturm bound: \(16\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(62, [\chi])\).

Total New Old
Modular forms 40 16 24
Cusp forms 24 16 8
Eisenstein series 16 0 16

Trace form

\( 16 q - 6 q^{3} - 4 q^{4} - 4 q^{5} + 8 q^{6} - 2 q^{7} - 12 q^{9} - 4 q^{10} + 4 q^{11} - 6 q^{12} - 4 q^{13} + 6 q^{14} - 2 q^{15} - 4 q^{16} - 2 q^{17} - 8 q^{18} - 16 q^{19} - 4 q^{20} - 6 q^{21} - 8 q^{22}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(62, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
62.2.d.a 62.d 31.d $8$ $0.495$ 8.0.511890625.1 None 62.2.d.a \(-2\) \(-4\) \(-4\) \(2\) $\mathrm{SU}(2)[C_{5}]$ \(q-\beta _{2}q^{2}+(\beta _{1}-\beta _{2}+\beta _{3}+\beta _{4}-\beta _{5}+\cdots)q^{3}+\cdots\)
62.2.d.b 62.d 31.d $8$ $0.495$ 8.0.1903140625.1 None 62.2.d.b \(2\) \(-2\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{5}]$ \(q-\beta _{6}q^{2}+\beta _{7}q^{3}+(-1+\beta _{2}+\beta _{3}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(62, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(62, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(31, [\chi])\)\(^{\oplus 2}\)