Defining parameters
Level: | \( N \) | \(=\) | \( 612 = 2^{2} \cdot 3^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 612.w (of order \(8\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 17 \) |
Character field: | \(\Q(\zeta_{8})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(216\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(612, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 480 | 28 | 452 |
Cusp forms | 384 | 28 | 356 |
Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(612, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
612.2.w.a | $4$ | $4.887$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(-4\) | \(0\) | \(q+(-1+\zeta_{8})q^{5}+(\zeta_{8}+\zeta_{8}^{2})q^{7}+(2+\cdots)q^{11}+\cdots\) |
612.2.w.b | $8$ | $4.887$ | 8.0.\(\cdots\).13 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{5}q^{5}+(\beta _{2}+\beta _{4})q^{7}+(\beta _{1}-\beta _{5}+\beta _{7})q^{11}+\cdots\) |
612.2.w.c | $16$ | $4.887$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(0\) | \(0\) | \(8\) | \(0\) | \(q+(-1-2\beta _{2}-\beta _{4}+\beta _{5}+\beta _{9}+\beta _{10}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(612, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(612, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(17, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(34, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(51, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(68, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(102, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(153, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(204, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(306, [\chi])\)\(^{\oplus 2}\)