Properties

Label 612.2.w
Level $612$
Weight $2$
Character orbit 612.w
Rep. character $\chi_{612}(145,\cdot)$
Character field $\Q(\zeta_{8})$
Dimension $28$
Newform subspaces $3$
Sturm bound $216$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 612 = 2^{2} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 612.w (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 17 \)
Character field: \(\Q(\zeta_{8})\)
Newform subspaces: \( 3 \)
Sturm bound: \(216\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(612, [\chi])\).

Total New Old
Modular forms 480 28 452
Cusp forms 384 28 356
Eisenstein series 96 0 96

Trace form

\( 28 q + 4 q^{5} - 12 q^{17} - 4 q^{19} - 16 q^{23} - 4 q^{25} + 12 q^{29} - 24 q^{31} + 32 q^{35} + 4 q^{37} + 28 q^{41} + 36 q^{43} + 12 q^{49} + 4 q^{53} + 60 q^{59} + 20 q^{61} + 24 q^{65} + 32 q^{67}+ \cdots - 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(612, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
612.2.w.a 612.w 17.d $4$ $4.887$ \(\Q(\zeta_{8})\) None 68.2.h.a \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{8}]$ \(q+(-1+\zeta_{8})q^{5}+(\zeta_{8}+\zeta_{8}^{2})q^{7}+(2+\cdots)q^{11}+\cdots\)
612.2.w.b 612.w 17.d $8$ $4.887$ 8.0.\(\cdots\).13 None 612.2.w.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$ \(q-\beta _{5}q^{5}+(\beta _{2}+\beta _{4})q^{7}+(\beta _{1}-\beta _{5}+\beta _{7})q^{11}+\cdots\)
612.2.w.c 612.w 17.d $16$ $4.887$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 204.2.o.a \(0\) \(0\) \(8\) \(0\) $\mathrm{SU}(2)[C_{8}]$ \(q+(-1-2\beta _{2}-\beta _{4}+\beta _{5}+\beta _{9}+\beta _{10}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(612, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(612, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(17, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(34, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(51, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(68, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(102, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(153, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(204, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(306, [\chi])\)\(^{\oplus 2}\)