Defining parameters
Level: | \( N \) | \(=\) | \( 612 = 2^{2} \cdot 3^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 612.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 17 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(216\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(612, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 120 | 8 | 112 |
Cusp forms | 96 | 8 | 88 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(612, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
612.2.b.a | $2$ | $4.887$ | \(\Q(\sqrt{-2}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+2\beta q^{5}+3\beta q^{7}-\beta q^{11}-4q^{13}+\cdots\) |
612.2.b.b | $2$ | $4.887$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+i q^{5}-2 i q^{7}+3 i q^{11}+3 q^{13}+\cdots\) |
612.2.b.c | $4$ | $4.887$ | \(\Q(i, \sqrt{17})\) | \(\Q(\sqrt{-51}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{1}q^{5}+(\beta _{1}+2\beta _{2})q^{11}+(1-\beta _{3})q^{13}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(612, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(612, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(34, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(51, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(68, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(102, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(153, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(204, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(306, [\chi])\)\(^{\oplus 2}\)