Properties

Label 6000.2.f.m.1249.3
Level $6000$
Weight $2$
Character 6000.1249
Analytic conductor $47.910$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6000,2,Mod(1249,6000)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6000.1249"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6000, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6000 = 2^{4} \cdot 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6000.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-4,0,16,0,0,0,0,0,0,0,-30,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(21)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.9102412128\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1500)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1249.3
Root \(-0.618034i\) of defining polynomial
Character \(\chi\) \(=\) 6000.1249
Dual form 6000.2.f.m.1249.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} -1.23607i q^{7} -1.00000 q^{9} +4.00000 q^{11} +4.47214i q^{13} -6.85410i q^{17} -8.61803 q^{19} +1.23607 q^{21} -2.38197i q^{23} -1.00000i q^{27} +7.70820 q^{29} -2.09017 q^{31} +4.00000i q^{33} +9.23607i q^{37} -4.47214 q^{39} +8.94427 q^{41} +4.00000i q^{43} -6.32624i q^{47} +5.47214 q^{49} +6.85410 q^{51} -1.09017i q^{53} -8.61803i q^{57} -6.00000 q^{59} -2.14590 q^{61} +1.23607i q^{63} -3.23607i q^{67} +2.38197 q^{69} +4.47214 q^{71} -13.7082i q^{73} -4.94427i q^{77} +8.32624 q^{79} +1.00000 q^{81} -3.56231i q^{83} +7.70820i q^{87} +11.7082 q^{89} +5.52786 q^{91} -2.09017i q^{93} +5.23607i q^{97} -4.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{9} + 16 q^{11} - 30 q^{19} - 4 q^{21} + 4 q^{29} + 14 q^{31} + 4 q^{49} + 14 q^{51} - 24 q^{59} - 22 q^{61} + 14 q^{69} + 2 q^{79} + 4 q^{81} + 20 q^{89} + 40 q^{91} - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6000\mathbb{Z}\right)^\times\).

\(n\) \(751\) \(4001\) \(4501\) \(5377\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 1.23607i − 0.467190i −0.972334 0.233595i \(-0.924951\pi\)
0.972334 0.233595i \(-0.0750489\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) 0 0
\(13\) 4.47214i 1.24035i 0.784465 + 0.620174i \(0.212938\pi\)
−0.784465 + 0.620174i \(0.787062\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 6.85410i − 1.66236i −0.556001 0.831182i \(-0.687665\pi\)
0.556001 0.831182i \(-0.312335\pi\)
\(18\) 0 0
\(19\) −8.61803 −1.97711 −0.988556 0.150852i \(-0.951798\pi\)
−0.988556 + 0.150852i \(0.951798\pi\)
\(20\) 0 0
\(21\) 1.23607 0.269732
\(22\) 0 0
\(23\) − 2.38197i − 0.496674i −0.968674 0.248337i \(-0.920116\pi\)
0.968674 0.248337i \(-0.0798841\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 1.00000i − 0.192450i
\(28\) 0 0
\(29\) 7.70820 1.43138 0.715689 0.698419i \(-0.246113\pi\)
0.715689 + 0.698419i \(0.246113\pi\)
\(30\) 0 0
\(31\) −2.09017 −0.375406 −0.187703 0.982226i \(-0.560104\pi\)
−0.187703 + 0.982226i \(0.560104\pi\)
\(32\) 0 0
\(33\) 4.00000i 0.696311i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 9.23607i 1.51840i 0.650857 + 0.759200i \(0.274410\pi\)
−0.650857 + 0.759200i \(0.725590\pi\)
\(38\) 0 0
\(39\) −4.47214 −0.716115
\(40\) 0 0
\(41\) 8.94427 1.39686 0.698430 0.715678i \(-0.253882\pi\)
0.698430 + 0.715678i \(0.253882\pi\)
\(42\) 0 0
\(43\) 4.00000i 0.609994i 0.952353 + 0.304997i \(0.0986555\pi\)
−0.952353 + 0.304997i \(0.901344\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 6.32624i − 0.922777i −0.887198 0.461388i \(-0.847352\pi\)
0.887198 0.461388i \(-0.152648\pi\)
\(48\) 0 0
\(49\) 5.47214 0.781734
\(50\) 0 0
\(51\) 6.85410 0.959766
\(52\) 0 0
\(53\) − 1.09017i − 0.149746i −0.997193 0.0748732i \(-0.976145\pi\)
0.997193 0.0748732i \(-0.0238552\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 8.61803i − 1.14149i
\(58\) 0 0
\(59\) −6.00000 −0.781133 −0.390567 0.920575i \(-0.627721\pi\)
−0.390567 + 0.920575i \(0.627721\pi\)
\(60\) 0 0
\(61\) −2.14590 −0.274754 −0.137377 0.990519i \(-0.543867\pi\)
−0.137377 + 0.990519i \(0.543867\pi\)
\(62\) 0 0
\(63\) 1.23607i 0.155730i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 3.23607i − 0.395349i −0.980268 0.197674i \(-0.936661\pi\)
0.980268 0.197674i \(-0.0633388\pi\)
\(68\) 0 0
\(69\) 2.38197 0.286755
\(70\) 0 0
\(71\) 4.47214 0.530745 0.265372 0.964146i \(-0.414505\pi\)
0.265372 + 0.964146i \(0.414505\pi\)
\(72\) 0 0
\(73\) − 13.7082i − 1.60442i −0.597039 0.802212i \(-0.703656\pi\)
0.597039 0.802212i \(-0.296344\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 4.94427i − 0.563452i
\(78\) 0 0
\(79\) 8.32624 0.936775 0.468387 0.883523i \(-0.344835\pi\)
0.468387 + 0.883523i \(0.344835\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) − 3.56231i − 0.391014i −0.980702 0.195507i \(-0.937365\pi\)
0.980702 0.195507i \(-0.0626352\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 7.70820i 0.826406i
\(88\) 0 0
\(89\) 11.7082 1.24107 0.620534 0.784180i \(-0.286916\pi\)
0.620534 + 0.784180i \(0.286916\pi\)
\(90\) 0 0
\(91\) 5.52786 0.579478
\(92\) 0 0
\(93\) − 2.09017i − 0.216741i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 5.23607i 0.531642i 0.964022 + 0.265821i \(0.0856430\pi\)
−0.964022 + 0.265821i \(0.914357\pi\)
\(98\) 0 0
\(99\) −4.00000 −0.402015
\(100\) 0 0
\(101\) −0.291796 −0.0290348 −0.0145174 0.999895i \(-0.504621\pi\)
−0.0145174 + 0.999895i \(0.504621\pi\)
\(102\) 0 0
\(103\) − 14.6525i − 1.44375i −0.692023 0.721876i \(-0.743280\pi\)
0.692023 0.721876i \(-0.256720\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 10.5623i 1.02110i 0.859849 + 0.510548i \(0.170558\pi\)
−0.859849 + 0.510548i \(0.829442\pi\)
\(108\) 0 0
\(109\) 16.2705 1.55843 0.779216 0.626755i \(-0.215617\pi\)
0.779216 + 0.626755i \(0.215617\pi\)
\(110\) 0 0
\(111\) −9.23607 −0.876649
\(112\) 0 0
\(113\) − 7.85410i − 0.738852i −0.929260 0.369426i \(-0.879554\pi\)
0.929260 0.369426i \(-0.120446\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 4.47214i − 0.413449i
\(118\) 0 0
\(119\) −8.47214 −0.776639
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 0 0
\(123\) 8.94427i 0.806478i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 18.4721i − 1.63914i −0.572981 0.819569i \(-0.694213\pi\)
0.572981 0.819569i \(-0.305787\pi\)
\(128\) 0 0
\(129\) −4.00000 −0.352180
\(130\) 0 0
\(131\) −0.944272 −0.0825014 −0.0412507 0.999149i \(-0.513134\pi\)
−0.0412507 + 0.999149i \(0.513134\pi\)
\(132\) 0 0
\(133\) 10.6525i 0.923687i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10.9443i 0.935032i 0.883985 + 0.467516i \(0.154851\pi\)
−0.883985 + 0.467516i \(0.845149\pi\)
\(138\) 0 0
\(139\) −9.32624 −0.791041 −0.395521 0.918457i \(-0.629436\pi\)
−0.395521 + 0.918457i \(0.629436\pi\)
\(140\) 0 0
\(141\) 6.32624 0.532765
\(142\) 0 0
\(143\) 17.8885i 1.49592i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 5.47214i 0.451334i
\(148\) 0 0
\(149\) −11.4164 −0.935269 −0.467634 0.883922i \(-0.654894\pi\)
−0.467634 + 0.883922i \(0.654894\pi\)
\(150\) 0 0
\(151\) 5.85410 0.476400 0.238200 0.971216i \(-0.423443\pi\)
0.238200 + 0.971216i \(0.423443\pi\)
\(152\) 0 0
\(153\) 6.85410i 0.554121i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 4.18034i 0.333627i 0.985988 + 0.166814i \(0.0533479\pi\)
−0.985988 + 0.166814i \(0.946652\pi\)
\(158\) 0 0
\(159\) 1.09017 0.0864561
\(160\) 0 0
\(161\) −2.94427 −0.232041
\(162\) 0 0
\(163\) 8.29180i 0.649464i 0.945806 + 0.324732i \(0.105274\pi\)
−0.945806 + 0.324732i \(0.894726\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 18.3262i 1.41813i 0.705145 + 0.709063i \(0.250882\pi\)
−0.705145 + 0.709063i \(0.749118\pi\)
\(168\) 0 0
\(169\) −7.00000 −0.538462
\(170\) 0 0
\(171\) 8.61803 0.659038
\(172\) 0 0
\(173\) 5.05573i 0.384380i 0.981358 + 0.192190i \(0.0615590\pi\)
−0.981358 + 0.192190i \(0.938441\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 6.00000i − 0.450988i
\(178\) 0 0
\(179\) 1.23607 0.0923881 0.0461940 0.998932i \(-0.485291\pi\)
0.0461940 + 0.998932i \(0.485291\pi\)
\(180\) 0 0
\(181\) 11.3820 0.846015 0.423007 0.906126i \(-0.360974\pi\)
0.423007 + 0.906126i \(0.360974\pi\)
\(182\) 0 0
\(183\) − 2.14590i − 0.158629i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 27.4164i − 2.00489i
\(188\) 0 0
\(189\) −1.23607 −0.0899107
\(190\) 0 0
\(191\) 21.1246 1.52852 0.764262 0.644906i \(-0.223104\pi\)
0.764262 + 0.644906i \(0.223104\pi\)
\(192\) 0 0
\(193\) − 19.4164i − 1.39762i −0.715306 0.698812i \(-0.753712\pi\)
0.715306 0.698812i \(-0.246288\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 22.0902i − 1.57386i −0.617043 0.786930i \(-0.711669\pi\)
0.617043 0.786930i \(-0.288331\pi\)
\(198\) 0 0
\(199\) 6.09017 0.431721 0.215860 0.976424i \(-0.430744\pi\)
0.215860 + 0.976424i \(0.430744\pi\)
\(200\) 0 0
\(201\) 3.23607 0.228255
\(202\) 0 0
\(203\) − 9.52786i − 0.668725i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 2.38197i 0.165558i
\(208\) 0 0
\(209\) −34.4721 −2.38449
\(210\) 0 0
\(211\) 14.2705 0.982422 0.491211 0.871040i \(-0.336554\pi\)
0.491211 + 0.871040i \(0.336554\pi\)
\(212\) 0 0
\(213\) 4.47214i 0.306426i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 2.58359i 0.175386i
\(218\) 0 0
\(219\) 13.7082 0.926315
\(220\) 0 0
\(221\) 30.6525 2.06191
\(222\) 0 0
\(223\) − 7.23607i − 0.484563i −0.970206 0.242281i \(-0.922104\pi\)
0.970206 0.242281i \(-0.0778957\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 9.79837i 0.650341i 0.945655 + 0.325170i \(0.105422\pi\)
−0.945655 + 0.325170i \(0.894578\pi\)
\(228\) 0 0
\(229\) −2.38197 −0.157405 −0.0787024 0.996898i \(-0.525078\pi\)
−0.0787024 + 0.996898i \(0.525078\pi\)
\(230\) 0 0
\(231\) 4.94427 0.325309
\(232\) 0 0
\(233\) 27.8885i 1.82704i 0.406795 + 0.913520i \(0.366646\pi\)
−0.406795 + 0.913520i \(0.633354\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 8.32624i 0.540847i
\(238\) 0 0
\(239\) 8.65248 0.559682 0.279841 0.960046i \(-0.409718\pi\)
0.279841 + 0.960046i \(0.409718\pi\)
\(240\) 0 0
\(241\) 14.3820 0.926424 0.463212 0.886248i \(-0.346697\pi\)
0.463212 + 0.886248i \(0.346697\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 38.5410i − 2.45231i
\(248\) 0 0
\(249\) 3.56231 0.225752
\(250\) 0 0
\(251\) −18.0000 −1.13615 −0.568075 0.822977i \(-0.692312\pi\)
−0.568075 + 0.822977i \(0.692312\pi\)
\(252\) 0 0
\(253\) − 9.52786i − 0.599012i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 3.20163i − 0.199712i −0.995002 0.0998560i \(-0.968162\pi\)
0.995002 0.0998560i \(-0.0318382\pi\)
\(258\) 0 0
\(259\) 11.4164 0.709381
\(260\) 0 0
\(261\) −7.70820 −0.477126
\(262\) 0 0
\(263\) − 24.0902i − 1.48546i −0.669589 0.742732i \(-0.733530\pi\)
0.669589 0.742732i \(-0.266470\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 11.7082i 0.716530i
\(268\) 0 0
\(269\) 19.1246 1.16605 0.583024 0.812455i \(-0.301869\pi\)
0.583024 + 0.812455i \(0.301869\pi\)
\(270\) 0 0
\(271\) 28.5623 1.73504 0.867518 0.497405i \(-0.165714\pi\)
0.867518 + 0.497405i \(0.165714\pi\)
\(272\) 0 0
\(273\) 5.52786i 0.334562i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 10.7639i 0.646742i 0.946272 + 0.323371i \(0.104816\pi\)
−0.946272 + 0.323371i \(0.895184\pi\)
\(278\) 0 0
\(279\) 2.09017 0.125135
\(280\) 0 0
\(281\) 3.23607 0.193048 0.0965238 0.995331i \(-0.469228\pi\)
0.0965238 + 0.995331i \(0.469228\pi\)
\(282\) 0 0
\(283\) − 32.0689i − 1.90630i −0.302502 0.953149i \(-0.597822\pi\)
0.302502 0.953149i \(-0.402178\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 11.0557i − 0.652599i
\(288\) 0 0
\(289\) −29.9787 −1.76345
\(290\) 0 0
\(291\) −5.23607 −0.306944
\(292\) 0 0
\(293\) − 17.3262i − 1.01221i −0.862472 0.506105i \(-0.831085\pi\)
0.862472 0.506105i \(-0.168915\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 4.00000i − 0.232104i
\(298\) 0 0
\(299\) 10.6525 0.616049
\(300\) 0 0
\(301\) 4.94427 0.284983
\(302\) 0 0
\(303\) − 0.291796i − 0.0167632i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 32.4721i 1.85328i 0.375947 + 0.926641i \(0.377318\pi\)
−0.375947 + 0.926641i \(0.622682\pi\)
\(308\) 0 0
\(309\) 14.6525 0.833550
\(310\) 0 0
\(311\) 32.1803 1.82478 0.912390 0.409322i \(-0.134235\pi\)
0.912390 + 0.409322i \(0.134235\pi\)
\(312\) 0 0
\(313\) − 2.58359i − 0.146033i −0.997331 0.0730166i \(-0.976737\pi\)
0.997331 0.0730166i \(-0.0232626\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 26.0000i − 1.46031i −0.683284 0.730153i \(-0.739449\pi\)
0.683284 0.730153i \(-0.260551\pi\)
\(318\) 0 0
\(319\) 30.8328 1.72631
\(320\) 0 0
\(321\) −10.5623 −0.589530
\(322\) 0 0
\(323\) 59.0689i 3.28668i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 16.2705i 0.899761i
\(328\) 0 0
\(329\) −7.81966 −0.431112
\(330\) 0 0
\(331\) 2.79837 0.153813 0.0769063 0.997038i \(-0.475496\pi\)
0.0769063 + 0.997038i \(0.475496\pi\)
\(332\) 0 0
\(333\) − 9.23607i − 0.506133i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 12.0000i 0.653682i 0.945079 + 0.326841i \(0.105984\pi\)
−0.945079 + 0.326841i \(0.894016\pi\)
\(338\) 0 0
\(339\) 7.85410 0.426576
\(340\) 0 0
\(341\) −8.36068 −0.452756
\(342\) 0 0
\(343\) − 15.4164i − 0.832408i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 16.7984i − 0.901784i −0.892579 0.450892i \(-0.851106\pi\)
0.892579 0.450892i \(-0.148894\pi\)
\(348\) 0 0
\(349\) 8.27051 0.442710 0.221355 0.975193i \(-0.428952\pi\)
0.221355 + 0.975193i \(0.428952\pi\)
\(350\) 0 0
\(351\) 4.47214 0.238705
\(352\) 0 0
\(353\) 22.2705i 1.18534i 0.805446 + 0.592670i \(0.201926\pi\)
−0.805446 + 0.592670i \(0.798074\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 8.47214i − 0.448393i
\(358\) 0 0
\(359\) 5.70820 0.301267 0.150634 0.988590i \(-0.451869\pi\)
0.150634 + 0.988590i \(0.451869\pi\)
\(360\) 0 0
\(361\) 55.2705 2.90897
\(362\) 0 0
\(363\) 5.00000i 0.262432i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 24.2918i 1.26802i 0.773324 + 0.634011i \(0.218592\pi\)
−0.773324 + 0.634011i \(0.781408\pi\)
\(368\) 0 0
\(369\) −8.94427 −0.465620
\(370\) 0 0
\(371\) −1.34752 −0.0699600
\(372\) 0 0
\(373\) − 14.6525i − 0.758676i −0.925258 0.379338i \(-0.876152\pi\)
0.925258 0.379338i \(-0.123848\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 34.4721i 1.77541i
\(378\) 0 0
\(379\) 16.9443 0.870369 0.435184 0.900341i \(-0.356683\pi\)
0.435184 + 0.900341i \(0.356683\pi\)
\(380\) 0 0
\(381\) 18.4721 0.946356
\(382\) 0 0
\(383\) 3.90983i 0.199783i 0.994998 + 0.0998915i \(0.0318496\pi\)
−0.994998 + 0.0998915i \(0.968150\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 4.00000i − 0.203331i
\(388\) 0 0
\(389\) −17.7082 −0.897842 −0.448921 0.893572i \(-0.648191\pi\)
−0.448921 + 0.893572i \(0.648191\pi\)
\(390\) 0 0
\(391\) −16.3262 −0.825653
\(392\) 0 0
\(393\) − 0.944272i − 0.0476322i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 28.1803i 1.41433i 0.707048 + 0.707165i \(0.250026\pi\)
−0.707048 + 0.707165i \(0.749974\pi\)
\(398\) 0 0
\(399\) −10.6525 −0.533291
\(400\) 0 0
\(401\) −0.180340 −0.00900574 −0.00450287 0.999990i \(-0.501433\pi\)
−0.00450287 + 0.999990i \(0.501433\pi\)
\(402\) 0 0
\(403\) − 9.34752i − 0.465633i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 36.9443i 1.83126i
\(408\) 0 0
\(409\) −28.6869 −1.41848 −0.709238 0.704969i \(-0.750961\pi\)
−0.709238 + 0.704969i \(0.750961\pi\)
\(410\) 0 0
\(411\) −10.9443 −0.539841
\(412\) 0 0
\(413\) 7.41641i 0.364938i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 9.32624i − 0.456708i
\(418\) 0 0
\(419\) 24.7639 1.20980 0.604899 0.796302i \(-0.293214\pi\)
0.604899 + 0.796302i \(0.293214\pi\)
\(420\) 0 0
\(421\) −2.43769 −0.118806 −0.0594030 0.998234i \(-0.518920\pi\)
−0.0594030 + 0.998234i \(0.518920\pi\)
\(422\) 0 0
\(423\) 6.32624i 0.307592i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 2.65248i 0.128362i
\(428\) 0 0
\(429\) −17.8885 −0.863667
\(430\) 0 0
\(431\) 16.4721 0.793435 0.396717 0.917941i \(-0.370149\pi\)
0.396717 + 0.917941i \(0.370149\pi\)
\(432\) 0 0
\(433\) − 3.23607i − 0.155516i −0.996972 0.0777578i \(-0.975224\pi\)
0.996972 0.0777578i \(-0.0247761\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 20.5279i 0.981981i
\(438\) 0 0
\(439\) −24.3607 −1.16267 −0.581336 0.813664i \(-0.697470\pi\)
−0.581336 + 0.813664i \(0.697470\pi\)
\(440\) 0 0
\(441\) −5.47214 −0.260578
\(442\) 0 0
\(443\) 3.56231i 0.169250i 0.996413 + 0.0846251i \(0.0269693\pi\)
−0.996413 + 0.0846251i \(0.973031\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 11.4164i − 0.539978i
\(448\) 0 0
\(449\) −34.8328 −1.64386 −0.821931 0.569587i \(-0.807103\pi\)
−0.821931 + 0.569587i \(0.807103\pi\)
\(450\) 0 0
\(451\) 35.7771 1.68468
\(452\) 0 0
\(453\) 5.85410i 0.275050i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 22.7639i 1.06485i 0.846477 + 0.532426i \(0.178720\pi\)
−0.846477 + 0.532426i \(0.821280\pi\)
\(458\) 0 0
\(459\) −6.85410 −0.319922
\(460\) 0 0
\(461\) 3.88854 0.181108 0.0905538 0.995892i \(-0.471136\pi\)
0.0905538 + 0.995892i \(0.471136\pi\)
\(462\) 0 0
\(463\) − 0.763932i − 0.0355029i −0.999842 0.0177515i \(-0.994349\pi\)
0.999842 0.0177515i \(-0.00565076\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 21.6738i − 1.00294i −0.865174 0.501471i \(-0.832792\pi\)
0.865174 0.501471i \(-0.167208\pi\)
\(468\) 0 0
\(469\) −4.00000 −0.184703
\(470\) 0 0
\(471\) −4.18034 −0.192620
\(472\) 0 0
\(473\) 16.0000i 0.735681i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 1.09017i 0.0499155i
\(478\) 0 0
\(479\) −37.7082 −1.72293 −0.861466 0.507815i \(-0.830453\pi\)
−0.861466 + 0.507815i \(0.830453\pi\)
\(480\) 0 0
\(481\) −41.3050 −1.88334
\(482\) 0 0
\(483\) − 2.94427i − 0.133969i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 2.47214i − 0.112023i −0.998430 0.0560116i \(-0.982162\pi\)
0.998430 0.0560116i \(-0.0178384\pi\)
\(488\) 0 0
\(489\) −8.29180 −0.374968
\(490\) 0 0
\(491\) 13.2361 0.597335 0.298668 0.954357i \(-0.403458\pi\)
0.298668 + 0.954357i \(0.403458\pi\)
\(492\) 0 0
\(493\) − 52.8328i − 2.37947i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 5.52786i − 0.247959i
\(498\) 0 0
\(499\) −30.7984 −1.37872 −0.689362 0.724417i \(-0.742109\pi\)
−0.689362 + 0.724417i \(0.742109\pi\)
\(500\) 0 0
\(501\) −18.3262 −0.818756
\(502\) 0 0
\(503\) 16.0000i 0.713405i 0.934218 + 0.356702i \(0.116099\pi\)
−0.934218 + 0.356702i \(0.883901\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 7.00000i − 0.310881i
\(508\) 0 0
\(509\) 29.7082 1.31679 0.658396 0.752671i \(-0.271235\pi\)
0.658396 + 0.752671i \(0.271235\pi\)
\(510\) 0 0
\(511\) −16.9443 −0.749570
\(512\) 0 0
\(513\) 8.61803i 0.380495i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 25.3050i − 1.11291i
\(518\) 0 0
\(519\) −5.05573 −0.221922
\(520\) 0 0
\(521\) 15.8197 0.693072 0.346536 0.938037i \(-0.387358\pi\)
0.346536 + 0.938037i \(0.387358\pi\)
\(522\) 0 0
\(523\) 14.3607i 0.627949i 0.949431 + 0.313974i \(0.101661\pi\)
−0.949431 + 0.313974i \(0.898339\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 14.3262i 0.624061i
\(528\) 0 0
\(529\) 17.3262 0.753315
\(530\) 0 0
\(531\) 6.00000 0.260378
\(532\) 0 0
\(533\) 40.0000i 1.73259i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 1.23607i 0.0533403i
\(538\) 0 0
\(539\) 21.8885 0.942806
\(540\) 0 0
\(541\) −9.43769 −0.405758 −0.202879 0.979204i \(-0.565030\pi\)
−0.202879 + 0.979204i \(0.565030\pi\)
\(542\) 0 0
\(543\) 11.3820i 0.488447i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 38.1803i 1.63247i 0.577718 + 0.816237i \(0.303944\pi\)
−0.577718 + 0.816237i \(0.696056\pi\)
\(548\) 0 0
\(549\) 2.14590 0.0915847
\(550\) 0 0
\(551\) −66.4296 −2.82999
\(552\) 0 0
\(553\) − 10.2918i − 0.437652i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 4.11146i − 0.174208i −0.996199 0.0871040i \(-0.972239\pi\)
0.996199 0.0871040i \(-0.0277612\pi\)
\(558\) 0 0
\(559\) −17.8885 −0.756605
\(560\) 0 0
\(561\) 27.4164 1.15752
\(562\) 0 0
\(563\) 29.7984i 1.25585i 0.778273 + 0.627926i \(0.216096\pi\)
−0.778273 + 0.627926i \(0.783904\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 1.23607i − 0.0519100i
\(568\) 0 0
\(569\) 33.5967 1.40845 0.704224 0.709977i \(-0.251295\pi\)
0.704224 + 0.709977i \(0.251295\pi\)
\(570\) 0 0
\(571\) −23.4164 −0.979946 −0.489973 0.871738i \(-0.662993\pi\)
−0.489973 + 0.871738i \(0.662993\pi\)
\(572\) 0 0
\(573\) 21.1246i 0.882493i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 14.7639i − 0.614631i −0.951608 0.307315i \(-0.900569\pi\)
0.951608 0.307315i \(-0.0994306\pi\)
\(578\) 0 0
\(579\) 19.4164 0.806918
\(580\) 0 0
\(581\) −4.40325 −0.182678
\(582\) 0 0
\(583\) − 4.36068i − 0.180601i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 4.49342i 0.185463i 0.995691 + 0.0927317i \(0.0295599\pi\)
−0.995691 + 0.0927317i \(0.970440\pi\)
\(588\) 0 0
\(589\) 18.0132 0.742219
\(590\) 0 0
\(591\) 22.0902 0.908668
\(592\) 0 0
\(593\) − 37.7426i − 1.54990i −0.632020 0.774952i \(-0.717774\pi\)
0.632020 0.774952i \(-0.282226\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 6.09017i 0.249254i
\(598\) 0 0
\(599\) 31.5279 1.28819 0.644097 0.764944i \(-0.277233\pi\)
0.644097 + 0.764944i \(0.277233\pi\)
\(600\) 0 0
\(601\) −12.8541 −0.524330 −0.262165 0.965023i \(-0.584436\pi\)
−0.262165 + 0.965023i \(0.584436\pi\)
\(602\) 0 0
\(603\) 3.23607i 0.131783i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 3.70820i − 0.150511i −0.997164 0.0752557i \(-0.976023\pi\)
0.997164 0.0752557i \(-0.0239773\pi\)
\(608\) 0 0
\(609\) 9.52786 0.386089
\(610\) 0 0
\(611\) 28.2918 1.14456
\(612\) 0 0
\(613\) 14.1803i 0.572739i 0.958119 + 0.286369i \(0.0924484\pi\)
−0.958119 + 0.286369i \(0.907552\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 12.7426i − 0.513000i −0.966544 0.256500i \(-0.917431\pi\)
0.966544 0.256500i \(-0.0825693\pi\)
\(618\) 0 0
\(619\) −5.14590 −0.206831 −0.103416 0.994638i \(-0.532977\pi\)
−0.103416 + 0.994638i \(0.532977\pi\)
\(620\) 0 0
\(621\) −2.38197 −0.0955850
\(622\) 0 0
\(623\) − 14.4721i − 0.579814i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 34.4721i − 1.37668i
\(628\) 0 0
\(629\) 63.3050 2.52413
\(630\) 0 0
\(631\) −12.0000 −0.477712 −0.238856 0.971055i \(-0.576772\pi\)
−0.238856 + 0.971055i \(0.576772\pi\)
\(632\) 0 0
\(633\) 14.2705i 0.567202i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 24.4721i 0.969621i
\(638\) 0 0
\(639\) −4.47214 −0.176915
\(640\) 0 0
\(641\) 0.583592 0.0230505 0.0115253 0.999934i \(-0.496331\pi\)
0.0115253 + 0.999934i \(0.496331\pi\)
\(642\) 0 0
\(643\) − 15.0557i − 0.593740i −0.954918 0.296870i \(-0.904057\pi\)
0.954918 0.296870i \(-0.0959428\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 8.58359i − 0.337456i −0.985663 0.168728i \(-0.946034\pi\)
0.985663 0.168728i \(-0.0539659\pi\)
\(648\) 0 0
\(649\) −24.0000 −0.942082
\(650\) 0 0
\(651\) −2.58359 −0.101259
\(652\) 0 0
\(653\) − 4.72949i − 0.185079i −0.995709 0.0925396i \(-0.970502\pi\)
0.995709 0.0925396i \(-0.0294985\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 13.7082i 0.534808i
\(658\) 0 0
\(659\) 10.3607 0.403595 0.201797 0.979427i \(-0.435322\pi\)
0.201797 + 0.979427i \(0.435322\pi\)
\(660\) 0 0
\(661\) −9.43769 −0.367084 −0.183542 0.983012i \(-0.558756\pi\)
−0.183542 + 0.983012i \(0.558756\pi\)
\(662\) 0 0
\(663\) 30.6525i 1.19044i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 18.3607i − 0.710928i
\(668\) 0 0
\(669\) 7.23607 0.279763
\(670\) 0 0
\(671\) −8.58359 −0.331366
\(672\) 0 0
\(673\) 28.9443i 1.11572i 0.829935 + 0.557860i \(0.188377\pi\)
−0.829935 + 0.557860i \(0.811623\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0.506578i 0.0194694i 0.999953 + 0.00973468i \(0.00309869\pi\)
−0.999953 + 0.00973468i \(0.996901\pi\)
\(678\) 0 0
\(679\) 6.47214 0.248378
\(680\) 0 0
\(681\) −9.79837 −0.375475
\(682\) 0 0
\(683\) − 1.03444i − 0.0395818i −0.999804 0.0197909i \(-0.993700\pi\)
0.999804 0.0197909i \(-0.00630005\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 2.38197i − 0.0908777i
\(688\) 0 0
\(689\) 4.87539 0.185737
\(690\) 0 0
\(691\) 15.6180 0.594138 0.297069 0.954856i \(-0.403991\pi\)
0.297069 + 0.954856i \(0.403991\pi\)
\(692\) 0 0
\(693\) 4.94427i 0.187817i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 61.3050i − 2.32209i
\(698\) 0 0
\(699\) −27.8885 −1.05484
\(700\) 0 0
\(701\) 34.5410 1.30460 0.652298 0.757962i \(-0.273805\pi\)
0.652298 + 0.757962i \(0.273805\pi\)
\(702\) 0 0
\(703\) − 79.5967i − 3.00205i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0.360680i 0.0135648i
\(708\) 0 0
\(709\) 36.3262 1.36426 0.682130 0.731231i \(-0.261054\pi\)
0.682130 + 0.731231i \(0.261054\pi\)
\(710\) 0 0
\(711\) −8.32624 −0.312258
\(712\) 0 0
\(713\) 4.97871i 0.186454i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 8.65248i 0.323133i
\(718\) 0 0
\(719\) −8.18034 −0.305075 −0.152538 0.988298i \(-0.548745\pi\)
−0.152538 + 0.988298i \(0.548745\pi\)
\(720\) 0 0
\(721\) −18.1115 −0.674506
\(722\) 0 0
\(723\) 14.3820i 0.534871i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 9.23607i 0.342547i 0.985224 + 0.171273i \(0.0547881\pi\)
−0.985224 + 0.171273i \(0.945212\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 27.4164 1.01403
\(732\) 0 0
\(733\) − 28.0689i − 1.03675i −0.855154 0.518374i \(-0.826538\pi\)
0.855154 0.518374i \(-0.173462\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 12.9443i − 0.476808i
\(738\) 0 0
\(739\) 5.32624 0.195929 0.0979644 0.995190i \(-0.468767\pi\)
0.0979644 + 0.995190i \(0.468767\pi\)
\(740\) 0 0
\(741\) 38.5410 1.41584
\(742\) 0 0
\(743\) − 47.4164i − 1.73954i −0.493458 0.869770i \(-0.664267\pi\)
0.493458 0.869770i \(-0.335733\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 3.56231i 0.130338i
\(748\) 0 0
\(749\) 13.0557 0.477046
\(750\) 0 0
\(751\) 7.67376 0.280020 0.140010 0.990150i \(-0.455287\pi\)
0.140010 + 0.990150i \(0.455287\pi\)
\(752\) 0 0
\(753\) − 18.0000i − 0.655956i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 28.4721i − 1.03484i −0.855732 0.517419i \(-0.826893\pi\)
0.855732 0.517419i \(-0.173107\pi\)
\(758\) 0 0
\(759\) 9.52786 0.345840
\(760\) 0 0
\(761\) −53.7771 −1.94942 −0.974709 0.223478i \(-0.928259\pi\)
−0.974709 + 0.223478i \(0.928259\pi\)
\(762\) 0 0
\(763\) − 20.1115i − 0.728084i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 26.8328i − 0.968877i
\(768\) 0 0
\(769\) −3.38197 −0.121957 −0.0609784 0.998139i \(-0.519422\pi\)
−0.0609784 + 0.998139i \(0.519422\pi\)
\(770\) 0 0
\(771\) 3.20163 0.115304
\(772\) 0 0
\(773\) − 10.0344i − 0.360914i −0.983583 0.180457i \(-0.942242\pi\)
0.983583 0.180457i \(-0.0577576\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 11.4164i 0.409561i
\(778\) 0 0
\(779\) −77.0820 −2.76175
\(780\) 0 0
\(781\) 17.8885 0.640102
\(782\) 0 0
\(783\) − 7.70820i − 0.275469i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 33.7082i 1.20157i 0.799412 + 0.600784i \(0.205145\pi\)
−0.799412 + 0.600784i \(0.794855\pi\)
\(788\) 0 0
\(789\) 24.0902 0.857633
\(790\) 0 0
\(791\) −9.70820 −0.345184
\(792\) 0 0
\(793\) − 9.59675i − 0.340791i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 51.2148i 1.81412i 0.421001 + 0.907060i \(0.361679\pi\)
−0.421001 + 0.907060i \(0.638321\pi\)
\(798\) 0 0
\(799\) −43.3607 −1.53399
\(800\) 0 0
\(801\) −11.7082 −0.413689
\(802\) 0 0
\(803\) − 54.8328i − 1.93501i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 19.1246i 0.673218i
\(808\) 0 0
\(809\) −28.7639 −1.01129 −0.505643 0.862743i \(-0.668745\pi\)
−0.505643 + 0.862743i \(0.668745\pi\)
\(810\) 0 0
\(811\) −36.1033 −1.26776 −0.633880 0.773432i \(-0.718539\pi\)
−0.633880 + 0.773432i \(0.718539\pi\)
\(812\) 0 0
\(813\) 28.5623i 1.00172i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 34.4721i − 1.20603i
\(818\) 0 0
\(819\) −5.52786 −0.193159
\(820\) 0 0
\(821\) −1.63932 −0.0572127 −0.0286063 0.999591i \(-0.509107\pi\)
−0.0286063 + 0.999591i \(0.509107\pi\)
\(822\) 0 0
\(823\) 44.7639i 1.56037i 0.625547 + 0.780186i \(0.284876\pi\)
−0.625547 + 0.780186i \(0.715124\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 21.0902i − 0.733377i −0.930344 0.366689i \(-0.880491\pi\)
0.930344 0.366689i \(-0.119509\pi\)
\(828\) 0 0
\(829\) 7.67376 0.266521 0.133260 0.991081i \(-0.457455\pi\)
0.133260 + 0.991081i \(0.457455\pi\)
\(830\) 0 0
\(831\) −10.7639 −0.373397
\(832\) 0 0
\(833\) − 37.5066i − 1.29953i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 2.09017i 0.0722468i
\(838\) 0 0
\(839\) −36.6525 −1.26538 −0.632692 0.774404i \(-0.718050\pi\)
−0.632692 + 0.774404i \(0.718050\pi\)
\(840\) 0 0
\(841\) 30.4164 1.04884
\(842\) 0 0
\(843\) 3.23607i 0.111456i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 6.18034i − 0.212359i
\(848\) 0 0
\(849\) 32.0689 1.10060
\(850\) 0 0
\(851\) 22.0000 0.754150
\(852\) 0 0
\(853\) − 49.9574i − 1.71051i −0.518208 0.855255i \(-0.673401\pi\)
0.518208 0.855255i \(-0.326599\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 45.8115i 1.56489i 0.622718 + 0.782446i \(0.286028\pi\)
−0.622718 + 0.782446i \(0.713972\pi\)
\(858\) 0 0
\(859\) −17.8885 −0.610349 −0.305175 0.952296i \(-0.598715\pi\)
−0.305175 + 0.952296i \(0.598715\pi\)
\(860\) 0 0
\(861\) 11.0557 0.376778
\(862\) 0 0
\(863\) 45.8885i 1.56206i 0.624491 + 0.781032i \(0.285307\pi\)
−0.624491 + 0.781032i \(0.714693\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 29.9787i − 1.01813i
\(868\) 0 0
\(869\) 33.3050 1.12979
\(870\) 0 0
\(871\) 14.4721 0.490370
\(872\) 0 0
\(873\) − 5.23607i − 0.177214i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 24.2492i − 0.818838i −0.912346 0.409419i \(-0.865731\pi\)
0.912346 0.409419i \(-0.134269\pi\)
\(878\) 0 0
\(879\) 17.3262 0.584400
\(880\) 0 0
\(881\) 4.06888 0.137084 0.0685421 0.997648i \(-0.478165\pi\)
0.0685421 + 0.997648i \(0.478165\pi\)
\(882\) 0 0
\(883\) − 20.2918i − 0.682873i −0.939905 0.341437i \(-0.889087\pi\)
0.939905 0.341437i \(-0.110913\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 8.79837i − 0.295420i −0.989031 0.147710i \(-0.952810\pi\)
0.989031 0.147710i \(-0.0471903\pi\)
\(888\) 0 0
\(889\) −22.8328 −0.765788
\(890\) 0 0
\(891\) 4.00000 0.134005
\(892\) 0 0
\(893\) 54.5197i 1.82443i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 10.6525i 0.355676i
\(898\) 0 0
\(899\) −16.1115 −0.537347
\(900\) 0 0
\(901\) −7.47214 −0.248933
\(902\) 0 0
\(903\) 4.94427i 0.164535i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 33.7771i 1.12155i 0.827968 + 0.560775i \(0.189497\pi\)
−0.827968 + 0.560775i \(0.810503\pi\)
\(908\) 0 0
\(909\) 0.291796 0.00967826
\(910\) 0 0
\(911\) −6.94427 −0.230074 −0.115037 0.993361i \(-0.536699\pi\)
−0.115037 + 0.993361i \(0.536699\pi\)
\(912\) 0 0
\(913\) − 14.2492i − 0.471580i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.16718i 0.0385438i
\(918\) 0 0
\(919\) −26.6738 −0.879886 −0.439943 0.898026i \(-0.645001\pi\)
−0.439943 + 0.898026i \(0.645001\pi\)
\(920\) 0 0
\(921\) −32.4721 −1.06999
\(922\) 0 0
\(923\) 20.0000i 0.658308i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 14.6525i 0.481250i
\(928\) 0 0
\(929\) −56.5410 −1.85505 −0.927525 0.373760i \(-0.878068\pi\)
−0.927525 + 0.373760i \(0.878068\pi\)
\(930\) 0 0
\(931\) −47.1591 −1.54558
\(932\) 0 0
\(933\) 32.1803i 1.05354i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 14.1803i − 0.463252i −0.972805 0.231626i \(-0.925596\pi\)
0.972805 0.231626i \(-0.0744045\pi\)
\(938\) 0 0
\(939\) 2.58359 0.0843123
\(940\) 0 0
\(941\) −41.3050 −1.34650 −0.673251 0.739414i \(-0.735103\pi\)
−0.673251 + 0.739414i \(0.735103\pi\)
\(942\) 0 0
\(943\) − 21.3050i − 0.693785i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 57.5755i − 1.87095i −0.353391 0.935476i \(-0.614972\pi\)
0.353391 0.935476i \(-0.385028\pi\)
\(948\) 0 0
\(949\) 61.3050 1.99004
\(950\) 0 0
\(951\) 26.0000 0.843108
\(952\) 0 0
\(953\) − 33.6869i − 1.09123i −0.838037 0.545613i \(-0.816297\pi\)
0.838037 0.545613i \(-0.183703\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 30.8328i 0.996683i
\(958\) 0 0
\(959\) 13.5279 0.436838
\(960\) 0 0
\(961\) −26.6312 −0.859071
\(962\) 0 0
\(963\) − 10.5623i − 0.340366i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 21.7082i − 0.698089i −0.937106 0.349044i \(-0.886506\pi\)
0.937106 0.349044i \(-0.113494\pi\)
\(968\) 0 0
\(969\) −59.0689 −1.89757
\(970\) 0 0
\(971\) −34.8328 −1.11784 −0.558919 0.829222i \(-0.688784\pi\)
−0.558919 + 0.829222i \(0.688784\pi\)
\(972\) 0 0
\(973\) 11.5279i 0.369566i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 28.3820i − 0.908020i −0.890997 0.454010i \(-0.849993\pi\)
0.890997 0.454010i \(-0.150007\pi\)
\(978\) 0 0
\(979\) 46.8328 1.49678
\(980\) 0 0
\(981\) −16.2705 −0.519477
\(982\) 0 0
\(983\) 18.9098i 0.603130i 0.953446 + 0.301565i \(0.0975090\pi\)
−0.953446 + 0.301565i \(0.902491\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 7.81966i − 0.248903i
\(988\) 0 0
\(989\) 9.52786 0.302968
\(990\) 0 0
\(991\) 15.7426 0.500082 0.250041 0.968235i \(-0.419556\pi\)
0.250041 + 0.968235i \(0.419556\pi\)
\(992\) 0 0
\(993\) 2.79837i 0.0888037i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 38.7214i − 1.22632i −0.789960 0.613159i \(-0.789899\pi\)
0.789960 0.613159i \(-0.210101\pi\)
\(998\) 0 0
\(999\) 9.23607 0.292216
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6000.2.f.m.1249.3 4
4.3 odd 2 1500.2.d.a.1249.2 4
5.2 odd 4 6000.2.a.t.1.2 2
5.3 odd 4 6000.2.a.j.1.1 2
5.4 even 2 inner 6000.2.f.m.1249.2 4
12.11 even 2 4500.2.d.j.4249.3 4
20.3 even 4 1500.2.a.f.1.2 yes 2
20.7 even 4 1500.2.a.b.1.1 2
20.19 odd 2 1500.2.d.a.1249.3 4
60.23 odd 4 4500.2.a.g.1.2 2
60.47 odd 4 4500.2.a.k.1.1 2
60.59 even 2 4500.2.d.j.4249.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1500.2.a.b.1.1 2 20.7 even 4
1500.2.a.f.1.2 yes 2 20.3 even 4
1500.2.d.a.1249.2 4 4.3 odd 2
1500.2.d.a.1249.3 4 20.19 odd 2
4500.2.a.g.1.2 2 60.23 odd 4
4500.2.a.k.1.1 2 60.47 odd 4
4500.2.d.j.4249.2 4 60.59 even 2
4500.2.d.j.4249.3 4 12.11 even 2
6000.2.a.j.1.1 2 5.3 odd 4
6000.2.a.t.1.2 2 5.2 odd 4
6000.2.f.m.1249.2 4 5.4 even 2 inner
6000.2.f.m.1249.3 4 1.1 even 1 trivial