Defining parameters
| Level: | \( N \) | \(=\) | \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \) |
| Weight: | \( k \) | \(=\) | \( 1 \) |
| Character orbit: | \([\chi]\) | \(=\) | 600.q (of order \(4\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 120 \) |
| Character field: | \(\Q(i)\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(120\) | ||
| Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(600, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 36 | 20 | 16 |
| Cusp forms | 12 | 12 | 0 |
| Eisenstein series | 24 | 8 | 16 |
The following table gives the dimensions of subspaces with specified projective image type.
| \(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
|---|---|---|---|---|
| Dimension | 12 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(600, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
| 600.1.q.a | $4$ | $0.299$ | \(\Q(\zeta_{8})\) | $D_{2}$ | \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-15}) \) | \(\Q(\sqrt{30}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{8}^{3}q^{2}-\zeta_{8}q^{3}-\zeta_{8}^{2}q^{4}+q^{6}+\cdots\) |
| 600.1.q.b | $8$ | $0.299$ | \(\Q(\zeta_{24})\) | $D_{6}$ | \(\Q(\sqrt{-2}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{24}^{3}q^{2}-\zeta_{24}q^{3}+\zeta_{24}^{6}q^{4}-\zeta_{24}^{4}q^{6}+\cdots\) |