Properties

Label 60.9.c
Level $60$
Weight $9$
Character orbit 60.c
Rep. character $\chi_{60}(31,\cdot)$
Character field $\Q$
Dimension $32$
Newform subspaces $1$
Sturm bound $108$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 60 = 2^{2} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 60.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 4 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(108\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(60, [\chi])\).

Total New Old
Modular forms 100 32 68
Cusp forms 92 32 60
Eisenstein series 8 0 8

Trace form

\( 32 q - 12 q^{2} - 134 q^{4} - 1134 q^{6} + 8460 q^{8} - 69984 q^{9} - 8750 q^{10} - 51392 q^{13} - 101604 q^{14} - 6782 q^{16} + 26244 q^{18} - 345000 q^{20} - 243648 q^{21} + 310196 q^{22} - 480654 q^{24}+ \cdots - 382019580 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{9}^{\mathrm{new}}(60, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
60.9.c.a 60.c 4.b $32$ $24.443$ None 60.9.c.a \(-12\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{9}^{\mathrm{old}}(60, [\chi])\) into lower level spaces

\( S_{9}^{\mathrm{old}}(60, [\chi]) \simeq \) \(S_{9}^{\mathrm{new}}(4, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 2}\)