Properties

Label 6.22
Level 6
Weight 22
Dimension 3
Nonzero newspaces 1
Newform subspaces 3
Sturm bound 44
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 6 = 2 \cdot 3 \)
Weight: \( k \) = \( 22 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 3 \)
Sturm bound: \(44\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{22}(\Gamma_1(6))\).

Total New Old
Modular forms 23 3 20
Cusp forms 19 3 16
Eisenstein series 4 0 4

Trace form

\( 3 q + 1024 q^{2} + 59049 q^{3} + 3145728 q^{4} + 16153674 q^{5} - 60466176 q^{6} - 1636375008 q^{7} + 1073741824 q^{8} + 10460353203 q^{9} - 37617076224 q^{10} - 98395423908 q^{11} + 61917364224 q^{12}+ \cdots - 34\!\cdots\!08 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{22}^{\mathrm{new}}(\Gamma_1(6))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
6.22.a \(\chi_{6}(1, \cdot)\) 6.22.a.a 1 1
6.22.a.b 1
6.22.a.c 1

Decomposition of \(S_{22}^{\mathrm{old}}(\Gamma_1(6))\) into lower level spaces

\( S_{22}^{\mathrm{old}}(\Gamma_1(6)) \cong \) \(S_{22}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{22}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 2}\)