Properties

Label 595.2.ba
Level $595$
Weight $2$
Character orbit 595.ba
Rep. character $\chi_{595}(324,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $128$
Newform subspaces $2$
Sturm bound $144$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 595 = 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 595.ba (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 35 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(144\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(595, [\chi])\).

Total New Old
Modular forms 152 128 24
Cusp forms 136 128 8
Eisenstein series 16 0 16

Trace form

\( 128 q + 64 q^{4} - 24 q^{6} + 60 q^{9} - 2 q^{10} + 4 q^{11} - 16 q^{14} - 24 q^{15} - 64 q^{16} - 12 q^{19} - 24 q^{20} - 12 q^{21} - 36 q^{24} - 8 q^{25} + 4 q^{26} + 40 q^{29} - 2 q^{30} + 16 q^{34}+ \cdots + 104 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(595, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
595.2.ba.a 595.ba 35.j $4$ $4.751$ \(\Q(\zeta_{12})\) None 595.2.ba.a \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\zeta_{12}q^{3}+(-2+2\zeta_{12}^{2})q^{4}+(-\zeta_{12}+\cdots)q^{5}+\cdots\)
595.2.ba.b 595.ba 35.j $124$ $4.751$ None 595.2.ba.b \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(595, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(595, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 2}\)