Defining parameters
Level: | \( N \) | \(=\) | \( 59 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 59.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(10\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(59))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 6 | 6 | 0 |
Cusp forms | 5 | 5 | 0 |
Eisenstein series | 1 | 1 | 0 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(59\) | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||
\(-\) | \(6\) | \(6\) | \(0\) | \(5\) | \(5\) | \(0\) | \(1\) | \(1\) | \(0\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(59))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 59 | |||||||
59.2.a.a | $5$ | $0.471$ | 5.5.138136.1 | None | \(0\) | \(-2\) | \(2\) | \(2\) | $-$ | \(q+(\beta _{1}-\beta _{3})q^{2}+(-1-\beta _{2}+\beta _{4})q^{3}+\cdots\) |