Properties

Label 59.2.a
Level $59$
Weight $2$
Character orbit 59.a
Rep. character $\chi_{59}(1,\cdot)$
Character field $\Q$
Dimension $5$
Newform subspaces $1$
Sturm bound $10$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 59 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 59.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(10\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(59))\).

Total New Old
Modular forms 6 6 0
Cusp forms 5 5 0
Eisenstein series 1 1 0

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(59\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(-\)\(6\)\(6\)\(0\)\(5\)\(5\)\(0\)\(1\)\(1\)\(0\)

Trace form

\( 5 q - 2 q^{3} + 8 q^{4} + 2 q^{5} - 4 q^{6} + 2 q^{7} - 6 q^{8} + 5 q^{9} - 8 q^{10} - 2 q^{11} - 22 q^{12} + 8 q^{13} - 18 q^{14} - 9 q^{15} + 10 q^{16} - q^{17} - 2 q^{18} + 6 q^{19} + 6 q^{20} + 15 q^{21}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(59))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 59
59.2.a.a 59.a 1.a $5$ $0.471$ 5.5.138136.1 None 59.2.a.a \(0\) \(-2\) \(2\) \(2\) $-$ $\mathrm{SU}(2)$ \(q+(\beta _{1}-\beta _{3})q^{2}+(-1-\beta _{2}+\beta _{4})q^{3}+\cdots\)