Defining parameters
| Level: | \( N \) | \(=\) | \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 588.c (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 3 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 10 \) | ||
| Sturm bound: | \(336\) | ||
| Trace bound: | \(13\) | ||
| Distinguishing \(T_p\): | \(5\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(588, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 248 | 27 | 221 |
| Cusp forms | 200 | 27 | 173 |
| Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(588, [\chi])\) into newform subspaces
Decomposition of \(S_{3}^{\mathrm{old}}(588, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(588, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(147, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(294, [\chi])\)\(^{\oplus 2}\)