Properties

Label 588.3.c
Level $588$
Weight $3$
Character orbit 588.c
Rep. character $\chi_{588}(197,\cdot)$
Character field $\Q$
Dimension $27$
Newform subspaces $10$
Sturm bound $336$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 588.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 3 \)
Character field: \(\Q\)
Newform subspaces: \( 10 \)
Sturm bound: \(336\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(5\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(588, [\chi])\).

Total New Old
Modular forms 248 27 221
Cusp forms 200 27 173
Eisenstein series 48 0 48

Trace form

\( 27 q - 3 q^{3} - 3 q^{9} - 6 q^{13} + 2 q^{15} - 22 q^{19} - 61 q^{25} + 9 q^{27} + 6 q^{31} + 116 q^{33} + 68 q^{37} - 116 q^{39} - 184 q^{43} - 100 q^{45} - 62 q^{51} - 184 q^{55} + 114 q^{57} - 270 q^{61}+ \cdots + 62 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(588, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
588.3.c.a 588.c 3.b $1$ $16.022$ \(\Q\) \(\Q(\sqrt{-3}) \) 84.3.p.a \(0\) \(-3\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-3q^{3}+9q^{9}-q^{13}-37q^{19}+5^{2}q^{25}+\cdots\)
588.3.c.b 588.c 3.b $1$ $16.022$ \(\Q\) \(\Q(\sqrt{-3}) \) 84.3.p.a \(0\) \(3\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+3q^{3}+9q^{9}+q^{13}+37q^{19}+5^{2}q^{25}+\cdots\)
588.3.c.c 588.c 3.b $1$ $16.022$ \(\Q\) \(\Q(\sqrt{-3}) \) 12.3.c.a \(0\) \(3\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+3q^{3}+9q^{9}+22q^{13}-26q^{19}+\cdots\)
588.3.c.d 588.c 3.b $2$ $16.022$ \(\Q(\sqrt{-5}) \) None 84.3.p.b \(0\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-2+\beta )q^{3}+3\beta q^{5}+(-1-4\beta )q^{9}+\cdots\)
588.3.c.e 588.c 3.b $2$ $16.022$ \(\Q(\sqrt{-35}) \) None 84.3.p.c \(0\) \(-1\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-1+\beta )q^{3}+(1-2\beta )q^{5}+(-8-\beta )q^{9}+\cdots\)
588.3.c.f 588.c 3.b $2$ $16.022$ \(\Q(\sqrt{-35}) \) None 84.3.p.c \(0\) \(1\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{3}+(1-2\beta )q^{5}+(-9+\beta )q^{9}+\cdots\)
588.3.c.g 588.c 3.b $2$ $16.022$ \(\Q(\sqrt{-5}) \) None 84.3.p.b \(0\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(2+\beta )q^{3}+3\beta q^{5}+(-1+4\beta )q^{9}+\cdots\)
588.3.c.h 588.c 3.b $4$ $16.022$ 4.0.116032.1 None 84.3.c.a \(0\) \(-6\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-2+\beta _{1})q^{3}+(2-\beta _{1}+\beta _{2}+2\beta _{3})q^{5}+\cdots\)
588.3.c.i 588.c 3.b $4$ $16.022$ \(\Q(\sqrt{-14}, \sqrt{22})\) None 588.3.c.i \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{3}+(-\beta _{1}-\beta _{2})q^{5}+(2-\beta _{3})q^{9}+\cdots\)
588.3.c.j 588.c 3.b $8$ $16.022$ 8.0.\(\cdots\).3 None 588.3.c.j \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{5}q^{3}-\beta _{3}q^{5}+(-\beta _{1}-\beta _{6})q^{9}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(588, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(588, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(147, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(294, [\chi])\)\(^{\oplus 2}\)