Properties

Label 58.4
Level 58
Weight 4
Dimension 105
Nonzero newspaces 4
Newform subspaces 8
Sturm bound 840
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 58 = 2 \cdot 29 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 8 \)
Sturm bound: \(840\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(58))\).

Total New Old
Modular forms 343 105 238
Cusp forms 287 105 182
Eisenstein series 56 0 56

Trace form

\( 105 q + 308 q^{20} + 1568 q^{21} + 392 q^{22} + 56 q^{23} - 224 q^{24} - 896 q^{25} - 770 q^{26} - 2184 q^{27} - 1568 q^{29} - 2184 q^{30} - 1232 q^{31} - 672 q^{33} + 70 q^{34} + 784 q^{35} + 784 q^{36}+ \cdots + 18592 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(58))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
58.4.a \(\chi_{58}(1, \cdot)\) 58.4.a.a 1 1
58.4.a.b 1
58.4.a.c 2
58.4.a.d 3
58.4.b \(\chi_{58}(57, \cdot)\) 58.4.b.a 8 1
58.4.d \(\chi_{58}(7, \cdot)\) 58.4.d.a 18 6
58.4.d.b 24
58.4.e \(\chi_{58}(5, \cdot)\) 58.4.e.a 48 6

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(58))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(58)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(29))\)\(^{\oplus 2}\)