Properties

Label 575.3.c.a.574.4
Level $575$
Weight $3$
Character 575.574
Analytic conductor $15.668$
Analytic rank $0$
Dimension $6$
CM discriminant -23
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [575,3,Mod(574,575)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(575, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("575.574");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 575 = 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 575.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.6676152007\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.24681024.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 12x^{4} + 36x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 23)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 574.4
Root \(2.14510i\) of defining polynomial
Character \(\chi\) \(=\) 575.574
Dual form 575.3.c.a.574.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.601466i q^{2} -1.54364i q^{3} +3.63824 q^{4} +0.928445 q^{6} +4.59414i q^{8} +6.61718 q^{9} +O(q^{10})\) \(q+0.601466i q^{2} -1.54364i q^{3} +3.63824 q^{4} +0.928445 q^{6} +4.59414i q^{8} +6.61718 q^{9} -5.61612i q^{12} -23.5162i q^{13} +11.7897 q^{16} +3.98001i q^{18} +23.0000i q^{23} +7.09168 q^{24} +14.1442 q^{26} -24.1073i q^{27} +42.4015 q^{29} -27.9663 q^{31} +25.4677i q^{32} +24.0749 q^{36} -36.3005 q^{39} +74.9986 q^{41} -13.8337 q^{46} -93.8839i q^{47} -18.1991i q^{48} -49.0000 q^{49} -85.5575i q^{52} +14.4997 q^{54} +25.5030i q^{58} -26.0000 q^{59} -16.8208i q^{62} +31.8410 q^{64} +35.5037 q^{69} +140.916 q^{71} +30.4003i q^{72} +56.8366i q^{73} -21.8335i q^{78} +22.3418 q^{81} +45.1091i q^{82} -65.4525i q^{87} +83.6795i q^{92} +43.1698i q^{93} +56.4679 q^{94} +39.3128 q^{96} -29.4718i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 24 q^{4} - 66 q^{6} - 54 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 24 q^{4} - 66 q^{6} - 54 q^{9} + 96 q^{16} + 264 q^{24} + 174 q^{26} + 510 q^{36} + 84 q^{39} - 294 q^{49} + 594 q^{54} - 156 q^{59} + 90 q^{64} + 486 q^{81} + 114 q^{94} - 42 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/575\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(277\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.601466i 0.300733i 0.988630 + 0.150366i \(0.0480453\pi\)
−0.988630 + 0.150366i \(0.951955\pi\)
\(3\) − 1.54364i − 0.514546i −0.966339 0.257273i \(-0.917176\pi\)
0.966339 0.257273i \(-0.0828239\pi\)
\(4\) 3.63824 0.909560
\(5\) 0 0
\(6\) 0.928445 0.154741
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 4.59414i 0.574267i
\(9\) 6.61718 0.735243
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) − 5.61612i − 0.468010i
\(13\) − 23.5162i − 1.80894i −0.426540 0.904469i \(-0.640268\pi\)
0.426540 0.904469i \(-0.359732\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 11.7897 0.736859
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 3.98001i 0.221112i
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 23.0000i 1.00000i
\(24\) 7.09168 0.295487
\(25\) 0 0
\(26\) 14.1442 0.544007
\(27\) − 24.1073i − 0.892862i
\(28\) 0 0
\(29\) 42.4015 1.46212 0.731060 0.682314i \(-0.239026\pi\)
0.731060 + 0.682314i \(0.239026\pi\)
\(30\) 0 0
\(31\) −27.9663 −0.902138 −0.451069 0.892489i \(-0.648957\pi\)
−0.451069 + 0.892489i \(0.648957\pi\)
\(32\) 25.4677i 0.795865i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 24.0749 0.668747
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) −36.3005 −0.930781
\(40\) 0 0
\(41\) 74.9986 1.82924 0.914618 0.404320i \(-0.132492\pi\)
0.914618 + 0.404320i \(0.132492\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −13.8337 −0.300733
\(47\) − 93.8839i − 1.99753i −0.0496817 0.998765i \(-0.515821\pi\)
0.0496817 0.998765i \(-0.484179\pi\)
\(48\) − 18.1991i − 0.379148i
\(49\) −49.0000 −1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) − 85.5575i − 1.64534i
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 14.4997 0.268513
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 25.5030i 0.439707i
\(59\) −26.0000 −0.440678 −0.220339 0.975423i \(-0.570716\pi\)
−0.220339 + 0.975423i \(0.570716\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) − 16.8208i − 0.271303i
\(63\) 0 0
\(64\) 31.8410 0.497516
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) 35.5037 0.514546
\(70\) 0 0
\(71\) 140.916 1.98474 0.992368 0.123310i \(-0.0393509\pi\)
0.992368 + 0.123310i \(0.0393509\pi\)
\(72\) 30.4003i 0.422226i
\(73\) 56.8366i 0.778584i 0.921114 + 0.389292i \(0.127280\pi\)
−0.921114 + 0.389292i \(0.872720\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) − 21.8335i − 0.279916i
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 22.3418 0.275825
\(82\) 45.1091i 0.550111i
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 65.4525i − 0.752327i
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 83.6795i 0.909560i
\(93\) 43.1698i 0.464191i
\(94\) 56.4679 0.600723
\(95\) 0 0
\(96\) 39.3128 0.409509
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) − 29.4718i − 0.300733i
\(99\) 0 0
\(100\) 0 0
\(101\) −166.000 −1.64356 −0.821782 0.569802i \(-0.807020\pi\)
−0.821782 + 0.569802i \(0.807020\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 108.037 1.03881
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) − 87.7080i − 0.812111i
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 154.267 1.32988
\(117\) − 155.611i − 1.33001i
\(118\) − 15.6381i − 0.132526i
\(119\) 0 0
\(120\) 0 0
\(121\) 121.000 1.00000
\(122\) 0 0
\(123\) − 115.771i − 0.941225i
\(124\) −101.748 −0.820549
\(125\) 0 0
\(126\) 0 0
\(127\) 243.881i 1.92032i 0.279443 + 0.960162i \(0.409850\pi\)
−0.279443 + 0.960162i \(0.590150\pi\)
\(128\) 121.022i 0.945484i
\(129\) 0 0
\(130\) 0 0
\(131\) −182.414 −1.39247 −0.696235 0.717814i \(-0.745143\pi\)
−0.696235 + 0.717814i \(0.745143\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 21.3542i 0.154741i
\(139\) −118.304 −0.851109 −0.425555 0.904933i \(-0.639921\pi\)
−0.425555 + 0.904933i \(0.639921\pi\)
\(140\) 0 0
\(141\) −144.923 −1.02782
\(142\) 84.7563i 0.596875i
\(143\) 0 0
\(144\) 78.0149 0.541770
\(145\) 0 0
\(146\) −34.1853 −0.234146
\(147\) 75.6382i 0.514546i
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) −188.672 −1.24948 −0.624741 0.780832i \(-0.714796\pi\)
−0.624741 + 0.780832i \(0.714796\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −132.070 −0.846601
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 13.4378i 0.0829495i
\(163\) 314.249i 1.92791i 0.266070 + 0.963954i \(0.414275\pi\)
−0.266070 + 0.963954i \(0.585725\pi\)
\(164\) 272.863 1.66380
\(165\) 0 0
\(166\) 0 0
\(167\) 242.000i 1.44910i 0.689221 + 0.724551i \(0.257953\pi\)
−0.689221 + 0.724551i \(0.742047\pi\)
\(168\) 0 0
\(169\) −384.011 −2.27225
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 22.0000i 0.127168i 0.997977 + 0.0635838i \(0.0202530\pi\)
−0.997977 + 0.0635838i \(0.979747\pi\)
\(174\) 39.3674 0.226249
\(175\) 0 0
\(176\) 0 0
\(177\) 40.1346i 0.226749i
\(178\) 0 0
\(179\) −287.187 −1.60440 −0.802198 0.597059i \(-0.796336\pi\)
−0.802198 + 0.597059i \(0.796336\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −105.665 −0.574267
\(185\) 0 0
\(186\) −25.9651 −0.139598
\(187\) 0 0
\(188\) − 341.572i − 1.81687i
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) − 49.1510i − 0.255995i
\(193\) 36.1432i 0.187271i 0.995607 + 0.0936353i \(0.0298488\pi\)
−0.995607 + 0.0936353i \(0.970151\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −178.274 −0.909560
\(197\) − 219.461i − 1.11402i −0.830507 0.557008i \(-0.811949\pi\)
0.830507 0.557008i \(-0.188051\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) − 99.8433i − 0.494274i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 152.195i 0.735243i
\(208\) − 277.250i − 1.33293i
\(209\) 0 0
\(210\) 0 0
\(211\) −406.000 −1.92417 −0.962085 0.272749i \(-0.912067\pi\)
−0.962085 + 0.272749i \(0.912067\pi\)
\(212\) 0 0
\(213\) − 217.524i − 1.02124i
\(214\) 0 0
\(215\) 0 0
\(216\) 110.752 0.512741
\(217\) 0 0
\(218\) 0 0
\(219\) 87.7351 0.400617
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 382.000i 1.71300i 0.516143 + 0.856502i \(0.327367\pi\)
−0.516143 + 0.856502i \(0.672633\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 194.798i 0.839647i
\(233\) 48.6597i 0.208840i 0.994533 + 0.104420i \(0.0332986\pi\)
−0.994533 + 0.104420i \(0.966701\pi\)
\(234\) 93.5946 0.399977
\(235\) 0 0
\(236\) −94.5942 −0.400823
\(237\) 0 0
\(238\) 0 0
\(239\) 217.542 0.910219 0.455109 0.890436i \(-0.349600\pi\)
0.455109 + 0.890436i \(0.349600\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 72.7773i 0.300733i
\(243\) − 251.453i − 1.03479i
\(244\) 0 0
\(245\) 0 0
\(246\) 69.6321 0.283057
\(247\) 0 0
\(248\) − 128.481i − 0.518068i
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −146.686 −0.577505
\(255\) 0 0
\(256\) 54.5736 0.213178
\(257\) 367.540i 1.43011i 0.699066 + 0.715057i \(0.253600\pi\)
−0.699066 + 0.715057i \(0.746400\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 280.578 1.07501
\(262\) − 109.716i − 0.418762i
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −303.541 −1.12840 −0.564202 0.825637i \(-0.690816\pi\)
−0.564202 + 0.825637i \(0.690816\pi\)
\(270\) 0 0
\(271\) −286.000 −1.05535 −0.527675 0.849446i \(-0.676936\pi\)
−0.527675 + 0.849446i \(0.676936\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 129.171 0.468010
\(277\) − 549.049i − 1.98213i −0.133391 0.991063i \(-0.542587\pi\)
0.133391 0.991063i \(-0.457413\pi\)
\(278\) − 71.1559i − 0.255956i
\(279\) −185.058 −0.663290
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) − 87.1660i − 0.309099i
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 512.687 1.80524
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 168.524i 0.585154i
\(289\) −289.000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 206.785i 0.708169i
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) −45.4938 −0.154741
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 540.872 1.80894
\(300\) 0 0
\(301\) 0 0
\(302\) − 113.480i − 0.375760i
\(303\) 256.244i 0.845689i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 214.000i − 0.697068i −0.937296 0.348534i \(-0.886680\pi\)
0.937296 0.348534i \(-0.113320\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 486.858 1.56546 0.782730 0.622361i \(-0.213826\pi\)
0.782730 + 0.622361i \(0.213826\pi\)
\(312\) − 166.769i − 0.534517i
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 266.000i 0.839117i 0.907728 + 0.419558i \(0.137815\pi\)
−0.907728 + 0.419558i \(0.862185\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 81.2848 0.250879
\(325\) 0 0
\(326\) −189.010 −0.579785
\(327\) 0 0
\(328\) 344.554i 1.05047i
\(329\) 0 0
\(330\) 0 0
\(331\) 661.999 2.00000 0.999999 0.00159277i \(-0.000506994\pi\)
0.999999 + 0.00159277i \(0.000506994\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −145.555 −0.435792
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(338\) − 230.969i − 0.683341i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −13.2322 −0.0382435
\(347\) 602.000i 1.73487i 0.497550 + 0.867435i \(0.334233\pi\)
−0.497550 + 0.867435i \(0.665767\pi\)
\(348\) − 238.132i − 0.684287i
\(349\) 26.0476 0.0746349 0.0373174 0.999303i \(-0.488119\pi\)
0.0373174 + 0.999303i \(0.488119\pi\)
\(350\) 0 0
\(351\) −566.911 −1.61513
\(352\) 0 0
\(353\) 695.320i 1.96974i 0.173284 + 0.984872i \(0.444562\pi\)
−0.173284 + 0.984872i \(0.555438\pi\)
\(354\) −24.1396 −0.0681908
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) − 172.733i − 0.482494i
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) 361.000 1.00000
\(362\) 0 0
\(363\) − 186.780i − 0.514546i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 271.164i 0.736859i
\(369\) 496.280 1.34493
\(370\) 0 0
\(371\) 0 0
\(372\) 157.062i 0.422210i
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 431.316 1.14712
\(377\) − 997.120i − 2.64488i
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 376.464 0.988095
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 186.814 0.486495
\(385\) 0 0
\(386\) −21.7389 −0.0563184
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) − 225.113i − 0.574267i
\(393\) 281.581i 0.716490i
\(394\) 131.998 0.335021
\(395\) 0 0
\(396\) 0 0
\(397\) − 528.356i − 1.33087i −0.746455 0.665435i \(-0.768246\pi\)
0.746455 0.665435i \(-0.231754\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 657.660i 1.63191i
\(404\) −603.948 −1.49492
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −256.398 −0.626889 −0.313445 0.949606i \(-0.601483\pi\)
−0.313445 + 0.949606i \(0.601483\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) −91.5402 −0.221112
\(415\) 0 0
\(416\) 598.902 1.43967
\(417\) 182.619i 0.437935i
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) − 244.195i − 0.578661i
\(423\) − 621.247i − 1.46867i
\(424\) 0 0
\(425\) 0 0
\(426\) 130.833 0.307120
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) − 284.218i − 0.657913i
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 52.7697i 0.120479i
\(439\) −626.871 −1.42795 −0.713976 0.700171i \(-0.753107\pi\)
−0.713976 + 0.700171i \(0.753107\pi\)
\(440\) 0 0
\(441\) −324.242 −0.735243
\(442\) 0 0
\(443\) − 867.929i − 1.95921i −0.200938 0.979604i \(-0.564399\pi\)
0.200938 0.979604i \(-0.435601\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −229.760 −0.515157
\(447\) 0 0
\(448\) 0 0
\(449\) 574.000 1.27840 0.639198 0.769042i \(-0.279266\pi\)
0.639198 + 0.769042i \(0.279266\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 291.241i 0.642916i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 542.680 1.17718 0.588590 0.808431i \(-0.299683\pi\)
0.588590 + 0.808431i \(0.299683\pi\)
\(462\) 0 0
\(463\) − 98.0000i − 0.211663i −0.994384 0.105832i \(-0.966250\pi\)
0.994384 0.105832i \(-0.0337504\pi\)
\(464\) 499.902 1.07738
\(465\) 0 0
\(466\) −29.2671 −0.0628050
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) − 566.150i − 1.20972i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) − 119.448i − 0.253067i
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 130.844i 0.273733i
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 440.227 0.909560
\(485\) 0 0
\(486\) 151.240 0.311194
\(487\) − 238.236i − 0.489190i −0.969625 0.244595i \(-0.921345\pi\)
0.969625 0.244595i \(-0.0786550\pi\)
\(488\) 0 0
\(489\) 485.086 0.991997
\(490\) 0 0
\(491\) −301.732 −0.614526 −0.307263 0.951625i \(-0.599413\pi\)
−0.307263 + 0.951625i \(0.599413\pi\)
\(492\) − 421.201i − 0.856101i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −329.715 −0.664748
\(497\) 0 0
\(498\) 0 0
\(499\) 1.01465 0.00203337 0.00101668 0.999999i \(-0.499676\pi\)
0.00101668 + 0.999999i \(0.499676\pi\)
\(500\) 0 0
\(501\) 373.560 0.745629
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 592.773i 1.16918i
\(508\) 887.298i 1.74665i
\(509\) 989.779 1.94456 0.972278 0.233827i \(-0.0751249\pi\)
0.972278 + 0.233827i \(0.0751249\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 516.912i 1.00959i
\(513\) 0 0
\(514\) −221.062 −0.430082
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 33.9600 0.0654336
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 168.758i 0.323291i
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) −663.665 −1.26654
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −529.000 −1.00000
\(530\) 0 0
\(531\) −172.047 −0.324005
\(532\) 0 0
\(533\) − 1763.68i − 3.30897i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 443.312i 0.825535i
\(538\) − 182.569i − 0.339348i
\(539\) 0 0
\(540\) 0 0
\(541\) 517.647 0.956834 0.478417 0.878133i \(-0.341211\pi\)
0.478417 + 0.878133i \(0.341211\pi\)
\(542\) − 172.019i − 0.317379i
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 866.121i − 1.58340i −0.610909 0.791701i \(-0.709196\pi\)
0.610909 0.791701i \(-0.290804\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 163.109i 0.295487i
\(553\) 0 0
\(554\) 330.234 0.596091
\(555\) 0 0
\(556\) −430.419 −0.774135
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) − 111.306i − 0.199473i
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) −527.263 −0.934864
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 647.389i 1.13977i
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 210.698 0.365795
\(577\) − 950.813i − 1.64786i −0.566694 0.823928i \(-0.691778\pi\)
0.566694 0.823928i \(-0.308222\pi\)
\(578\) − 173.824i − 0.300733i
\(579\) 55.7920 0.0963593
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) −261.115 −0.447115
\(585\) 0 0
\(586\) 0 0
\(587\) 637.468i 1.08598i 0.839740 + 0.542988i \(0.182707\pi\)
−0.839740 + 0.542988i \(0.817293\pi\)
\(588\) 275.190i 0.468010i
\(589\) 0 0
\(590\) 0 0
\(591\) −338.768 −0.573212
\(592\) 0 0
\(593\) 286.000i 0.482293i 0.970489 + 0.241147i \(0.0775235\pi\)
−0.970489 + 0.241147i \(0.922476\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 325.316i 0.544007i
\(599\) −1106.00 −1.84641 −0.923205 0.384307i \(-0.874440\pi\)
−0.923205 + 0.384307i \(0.874440\pi\)
\(600\) 0 0
\(601\) −1201.97 −1.99995 −0.999973 0.00737547i \(-0.997652\pi\)
−0.999973 + 0.00737547i \(0.997652\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −686.434 −1.13648
\(605\) 0 0
\(606\) −154.122 −0.254326
\(607\) 386.000i 0.635914i 0.948105 + 0.317957i \(0.102997\pi\)
−0.948105 + 0.317957i \(0.897003\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2207.79 −3.61341
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 128.714 0.209631
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 554.467 0.892862
\(622\) 292.829i 0.470785i
\(623\) 0 0
\(624\) −427.973 −0.685854
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 626.717i 0.990074i
\(634\) −159.990 −0.252350
\(635\) 0 0
\(636\) 0 0
\(637\) 1152.29i 1.80894i
\(638\) 0 0
\(639\) 932.469 1.45926
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 230.059i − 0.355578i −0.984069 0.177789i \(-0.943106\pi\)
0.984069 0.177789i \(-0.0568944\pi\)
\(648\) 102.641i 0.158397i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 1143.31i 1.75355i
\(653\) − 56.2240i − 0.0861010i −0.999073 0.0430505i \(-0.986292\pi\)
0.999073 0.0430505i \(-0.0137076\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 884.215 1.34789
\(657\) 376.098i 0.572448i
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 398.170i 0.601465i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 975.233i 1.46212i
\(668\) 880.454i 1.31804i
\(669\) 589.669 0.881419
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) − 1323.09i − 1.96596i −0.183700 0.982982i \(-0.558807\pi\)
0.183700 0.982982i \(-0.441193\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −1397.12 −2.06675
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 788.189i 1.15401i 0.816741 + 0.577005i \(0.195779\pi\)
−0.816741 + 0.577005i \(0.804221\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 554.000 0.801737 0.400868 0.916136i \(-0.368708\pi\)
0.400868 + 0.916136i \(0.368708\pi\)
\(692\) 80.0413i 0.115667i
\(693\) 0 0
\(694\) −362.082 −0.521732
\(695\) 0 0
\(696\) 300.698 0.432037
\(697\) 0 0
\(698\) 15.6667i 0.0224451i
\(699\) 75.1129 0.107458
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) − 340.977i − 0.485723i
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) −418.211 −0.592367
\(707\) 0 0
\(708\) 146.019i 0.206242i
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 643.224i − 0.902138i
\(714\) 0 0
\(715\) 0 0
\(716\) −1044.85 −1.45929
\(717\) − 335.806i − 0.468349i
\(718\) 0 0
\(719\) 862.000 1.19889 0.599444 0.800417i \(-0.295389\pi\)
0.599444 + 0.800417i \(0.295389\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 217.129i 0.300733i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 112.342 0.154741
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −187.076 −0.256620
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −585.757 −0.795865
\(737\) 0 0
\(738\) 298.495i 0.404465i
\(739\) −1316.84 −1.78192 −0.890958 0.454086i \(-0.849966\pi\)
−0.890958 + 0.454086i \(0.849966\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) −198.328 −0.266570
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) − 1106.87i − 1.47190i
\(753\) 0 0
\(754\) 599.734 0.795403
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1475.62 1.93906 0.969529 0.244977i \(-0.0787804\pi\)
0.969529 + 0.244977i \(0.0787804\pi\)
\(762\) 226.430i 0.297152i
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 611.421i 0.797159i
\(768\) − 84.2418i − 0.109690i
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 567.348 0.735860
\(772\) 131.498i 0.170334i
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) − 1022.18i − 1.30547i
\(784\) −577.697 −0.736859
\(785\) 0 0
\(786\) −169.361 −0.215472
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) − 798.451i − 1.01326i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 317.788 0.400237
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) −395.560 −0.490769
\(807\) 468.557i 0.580615i
\(808\) − 762.627i − 0.943845i
\(809\) −146.000 −0.180470 −0.0902349 0.995921i \(-0.528762\pi\)
−0.0902349 + 0.995921i \(0.528762\pi\)
\(810\) 0 0
\(811\) −1620.09 −1.99764 −0.998820 0.0485755i \(-0.984532\pi\)
−0.998820 + 0.0485755i \(0.984532\pi\)
\(812\) 0 0
\(813\) 441.480i 0.543026i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) − 154.214i − 0.188526i
\(819\) 0 0
\(820\) 0 0
\(821\) 1274.00 1.55177 0.775883 0.630877i \(-0.217305\pi\)
0.775883 + 0.630877i \(0.217305\pi\)
\(822\) 0 0
\(823\) − 437.797i − 0.531952i −0.963980 0.265976i \(-0.914306\pi\)
0.963980 0.265976i \(-0.0856942\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 553.723i 0.668747i
\(829\) 1654.00 1.99517 0.997587 0.0694210i \(-0.0221152\pi\)
0.997587 + 0.0694210i \(0.0221152\pi\)
\(830\) 0 0
\(831\) −847.533 −1.01989
\(832\) − 748.780i − 0.899976i
\(833\) 0 0
\(834\) −109.839 −0.131701
\(835\) 0 0
\(836\) 0 0
\(837\) 674.191i 0.805485i
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 956.883 1.13779
\(842\) 0 0
\(843\) 0 0
\(844\) −1477.13 −1.75015
\(845\) 0 0
\(846\) 373.659 0.441677
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) − 791.403i − 0.928877i
\(853\) 1606.00i 1.88277i 0.337339 + 0.941383i \(0.390473\pi\)
−0.337339 + 0.941383i \(0.609527\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 1589.30i − 1.85449i −0.374458 0.927244i \(-0.622171\pi\)
0.374458 0.927244i \(-0.377829\pi\)
\(858\) 0 0
\(859\) 845.930 0.984784 0.492392 0.870374i \(-0.336123\pi\)
0.492392 + 0.870374i \(0.336123\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1395.38i 1.61690i 0.588568 + 0.808448i \(0.299692\pi\)
−0.588568 + 0.808448i \(0.700308\pi\)
\(864\) 613.956 0.710597
\(865\) 0 0
\(866\) 0 0
\(867\) 446.111i 0.514546i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 319.201 0.364385
\(877\) − 1558.00i − 1.77651i −0.459350 0.888255i \(-0.651918\pi\)
0.459350 0.888255i \(-0.348082\pi\)
\(878\) − 377.041i − 0.429432i
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) − 195.020i − 0.221112i
\(883\) − 938.000i − 1.06229i −0.847282 0.531144i \(-0.821762\pi\)
0.847282 0.531144i \(-0.178238\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 522.029 0.589198
\(887\) 841.479i 0.948680i 0.880342 + 0.474340i \(0.157313\pi\)
−0.880342 + 0.474340i \(0.842687\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 1389.81i 1.55808i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 834.910i − 0.930781i
\(898\) 345.241i 0.384456i
\(899\) −1185.81 −1.31903
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) −175.171 −0.193346
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 0 0
\(909\) −1098.45 −1.20842
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) −330.338 −0.358674
\(922\) 326.404i 0.354017i
\(923\) − 3313.81i − 3.59026i
\(924\) 0 0
\(925\) 0 0
\(926\) 58.9436 0.0636540
\(927\) 0 0
\(928\) 1079.87i 1.16365i
\(929\) 340.699 0.366737 0.183368 0.983044i \(-0.441300\pi\)
0.183368 + 0.983044i \(0.441300\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 177.036i 0.189952i
\(933\) − 751.533i − 0.805501i
\(934\) 0 0
\(935\) 0 0
\(936\) 714.898 0.763780
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 1724.97i 1.82924i
\(944\) −306.533 −0.324717
\(945\) 0 0
\(946\) 0 0
\(947\) − 1846.71i − 1.95006i −0.222069 0.975031i \(-0.571281\pi\)
0.222069 0.975031i \(-0.428719\pi\)
\(948\) 0 0
\(949\) 1336.58 1.40841
\(950\) 0 0
\(951\) 410.607 0.431764
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 791.471 0.827898
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −178.887 −0.186147
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1121.00i 1.15926i 0.814881 + 0.579629i \(0.196802\pi\)
−0.814881 + 0.579629i \(0.803198\pi\)
\(968\) 555.891i 0.574267i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) − 914.846i − 0.941200i
\(973\) 0 0
\(974\) 143.291 0.147116
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 291.763i 0.298326i
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) − 181.482i − 0.184808i
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 531.867 0.540515
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 1154.00 1.16448 0.582240 0.813017i \(-0.302176\pi\)
0.582240 + 0.813017i \(0.302176\pi\)
\(992\) − 712.236i − 0.717980i
\(993\) − 1021.89i − 1.02909i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 1318.00i − 1.32197i −0.750401 0.660983i \(-0.770140\pi\)
0.750401 0.660983i \(-0.229860\pi\)
\(998\) 0.610277i 0 0.000611500i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 575.3.c.a.574.4 6
5.2 odd 4 575.3.d.b.551.2 3
5.3 odd 4 23.3.b.a.22.2 3
5.4 even 2 inner 575.3.c.a.574.3 6
15.8 even 4 207.3.d.a.91.2 3
20.3 even 4 368.3.f.a.321.2 3
23.22 odd 2 CM 575.3.c.a.574.4 6
40.3 even 4 1472.3.f.b.321.2 3
40.13 odd 4 1472.3.f.a.321.2 3
115.22 even 4 575.3.d.b.551.2 3
115.68 even 4 23.3.b.a.22.2 3
115.114 odd 2 inner 575.3.c.a.574.3 6
345.68 odd 4 207.3.d.a.91.2 3
460.183 odd 4 368.3.f.a.321.2 3
920.413 even 4 1472.3.f.a.321.2 3
920.643 odd 4 1472.3.f.b.321.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.3.b.a.22.2 3 5.3 odd 4
23.3.b.a.22.2 3 115.68 even 4
207.3.d.a.91.2 3 15.8 even 4
207.3.d.a.91.2 3 345.68 odd 4
368.3.f.a.321.2 3 20.3 even 4
368.3.f.a.321.2 3 460.183 odd 4
575.3.c.a.574.3 6 5.4 even 2 inner
575.3.c.a.574.3 6 115.114 odd 2 inner
575.3.c.a.574.4 6 1.1 even 1 trivial
575.3.c.a.574.4 6 23.22 odd 2 CM
575.3.d.b.551.2 3 5.2 odd 4
575.3.d.b.551.2 3 115.22 even 4
1472.3.f.a.321.2 3 40.13 odd 4
1472.3.f.a.321.2 3 920.413 even 4
1472.3.f.b.321.2 3 40.3 even 4
1472.3.f.b.321.2 3 920.643 odd 4