Properties

Label 575.1
Level 575
Weight 1
Dimension 15
Nonzero newspaces 2
Newform subspaces 5
Sturm bound 26400
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 575 = 5^{2} \cdot 23 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 5 \)
Sturm bound: \(26400\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(575))\).

Total New Old
Modular forms 634 446 188
Cusp forms 18 15 3
Eisenstein series 616 431 185

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 15 0 0 0

Trace form

\( 15 q + q^{2} + q^{3} - 9 q^{6} - q^{8} + q^{13} + 9 q^{16} - q^{23} + q^{24} - 9 q^{26} - q^{27} + q^{29} - 3 q^{31} - q^{39} - 3 q^{41} - 3 q^{46} + q^{47} - q^{48} - q^{49} + q^{54} - q^{58}+ \cdots + q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(575))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
575.1.c \(\chi_{575}(574, \cdot)\) 575.1.c.a 2 1
575.1.c.b 6
575.1.d \(\chi_{575}(551, \cdot)\) 575.1.d.a 1 1
575.1.d.b 3
575.1.d.c 3
575.1.f \(\chi_{575}(93, \cdot)\) None 0 2
575.1.h \(\chi_{575}(91, \cdot)\) None 0 4
575.1.j \(\chi_{575}(114, \cdot)\) None 0 4
575.1.l \(\chi_{575}(47, \cdot)\) None 0 8
575.1.n \(\chi_{575}(51, \cdot)\) None 0 10
575.1.o \(\chi_{575}(74, \cdot)\) None 0 10
575.1.q \(\chi_{575}(18, \cdot)\) None 0 20
575.1.t \(\chi_{575}(14, \cdot)\) None 0 40
575.1.v \(\chi_{575}(11, \cdot)\) None 0 40
575.1.x \(\chi_{575}(2, \cdot)\) None 0 80

Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(575))\) into lower level spaces

\( S_{1}^{\mathrm{old}}(\Gamma_1(575)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(115))\)\(^{\oplus 2}\)