Properties

Label 570.2.u.c.511.1
Level $570$
Weight $2$
Character 570.511
Analytic conductor $4.551$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.u (of order \(9\), degree \(6\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
Defining polynomial: \(x^{6} - x^{3} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 511.1
Root \(-0.766044 - 0.642788i\) of defining polynomial
Character \(\chi\) \(=\) 570.511
Dual form 570.2.u.c.541.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.173648 + 0.984808i) q^{2} +(0.766044 + 0.642788i) q^{3} +(-0.939693 - 0.342020i) q^{4} +(-0.939693 + 0.342020i) q^{5} +(-0.766044 + 0.642788i) q^{6} +(-0.326352 - 0.565258i) q^{7} +(0.500000 - 0.866025i) q^{8} +(0.173648 + 0.984808i) q^{9} +O(q^{10})\) \(q+(-0.173648 + 0.984808i) q^{2} +(0.766044 + 0.642788i) q^{3} +(-0.939693 - 0.342020i) q^{4} +(-0.939693 + 0.342020i) q^{5} +(-0.766044 + 0.642788i) q^{6} +(-0.326352 - 0.565258i) q^{7} +(0.500000 - 0.866025i) q^{8} +(0.173648 + 0.984808i) q^{9} +(-0.173648 - 0.984808i) q^{10} +(-1.43969 + 2.49362i) q^{11} +(-0.500000 - 0.866025i) q^{12} +(-1.26604 + 1.06234i) q^{13} +(0.613341 - 0.223238i) q^{14} +(-0.939693 - 0.342020i) q^{15} +(0.766044 + 0.642788i) q^{16} +(-1.26604 + 7.18009i) q^{17} -1.00000 q^{18} +(-3.79086 + 2.15160i) q^{19} +1.00000 q^{20} +(0.113341 - 0.642788i) q^{21} +(-2.20574 - 1.85083i) q^{22} +(-1.61334 - 0.587208i) q^{23} +(0.939693 - 0.342020i) q^{24} +(0.766044 - 0.642788i) q^{25} +(-0.826352 - 1.43128i) q^{26} +(-0.500000 + 0.866025i) q^{27} +(0.113341 + 0.642788i) q^{28} +(0.0282185 + 0.160035i) q^{29} +(0.500000 - 0.866025i) q^{30} +(-0.471782 - 0.817150i) q^{31} +(-0.766044 + 0.642788i) q^{32} +(-2.70574 + 0.984808i) q^{33} +(-6.85117 - 2.49362i) q^{34} +(0.500000 + 0.419550i) q^{35} +(0.173648 - 0.984808i) q^{36} -7.24897 q^{37} +(-1.46064 - 4.10689i) q^{38} -1.65270 q^{39} +(-0.173648 + 0.984808i) q^{40} +(-0.309278 - 0.259515i) q^{41} +(0.613341 + 0.223238i) q^{42} +(10.6702 - 3.88365i) q^{43} +(2.20574 - 1.85083i) q^{44} +(-0.500000 - 0.866025i) q^{45} +(0.858441 - 1.48686i) q^{46} +(1.00727 + 5.71253i) q^{47} +(0.173648 + 0.984808i) q^{48} +(3.28699 - 5.69323i) q^{49} +(0.500000 + 0.866025i) q^{50} +(-5.58512 + 4.68647i) q^{51} +(1.55303 - 0.565258i) q^{52} +(9.93629 + 3.61651i) q^{53} +(-0.766044 - 0.642788i) q^{54} +(0.500000 - 2.83564i) q^{55} -0.652704 q^{56} +(-4.28699 - 0.788496i) q^{57} -0.162504 q^{58} +(-0.790859 + 4.48519i) q^{59} +(0.766044 + 0.642788i) q^{60} +(-10.8093 - 3.93426i) q^{61} +(0.886659 - 0.322718i) q^{62} +(0.500000 - 0.419550i) q^{63} +(-0.500000 - 0.866025i) q^{64} +(0.826352 - 1.43128i) q^{65} +(-0.500000 - 2.83564i) q^{66} +(-0.396459 - 2.24843i) q^{67} +(3.64543 - 6.31407i) q^{68} +(-0.858441 - 1.48686i) q^{69} +(-0.500000 + 0.419550i) q^{70} +(4.01114 - 1.45994i) q^{71} +(0.939693 + 0.342020i) q^{72} +(8.73055 + 7.32580i) q^{73} +(1.25877 - 7.13884i) q^{74} +1.00000 q^{75} +(4.29813 - 0.725293i) q^{76} +1.87939 q^{77} +(0.286989 - 1.62760i) q^{78} +(-3.73783 - 3.13641i) q^{79} +(-0.939693 - 0.342020i) q^{80} +(-0.939693 + 0.342020i) q^{81} +(0.309278 - 0.259515i) q^{82} +(2.14543 + 3.71599i) q^{83} +(-0.326352 + 0.565258i) q^{84} +(-1.26604 - 7.18009i) q^{85} +(1.97178 + 11.1825i) q^{86} +(-0.0812519 + 0.140732i) q^{87} +(1.43969 + 2.49362i) q^{88} +(1.91147 - 1.60392i) q^{89} +(0.939693 - 0.342020i) q^{90} +(1.01367 + 0.368946i) q^{91} +(1.31521 + 1.10359i) q^{92} +(0.163848 - 0.929228i) q^{93} -5.80066 q^{94} +(2.82635 - 3.31839i) q^{95} -1.00000 q^{96} +(-2.43717 + 13.8219i) q^{97} +(5.03596 + 4.22567i) q^{98} +(-2.70574 - 0.984808i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q - 3q^{7} + 3q^{8} + O(q^{10}) \) \( 6q - 3q^{7} + 3q^{8} - 3q^{11} - 3q^{12} - 3q^{13} - 3q^{14} - 3q^{17} - 6q^{18} + 9q^{19} + 6q^{20} - 6q^{21} - 3q^{22} - 3q^{23} - 6q^{26} - 3q^{27} - 6q^{28} + 15q^{29} + 3q^{30} + 12q^{31} - 6q^{33} - 15q^{34} + 3q^{35} - 18q^{37} - 12q^{39} + 18q^{41} - 3q^{42} + 21q^{43} + 3q^{44} - 3q^{45} - 3q^{46} + 24q^{47} + 12q^{49} + 3q^{50} - 12q^{51} - 3q^{52} + 12q^{53} + 3q^{55} - 6q^{56} - 18q^{57} - 6q^{58} + 27q^{59} - 45q^{61} + 12q^{62} + 3q^{63} - 3q^{64} + 6q^{65} - 3q^{66} - 12q^{67} + 6q^{68} + 3q^{69} - 3q^{70} + 18q^{71} + 15q^{73} - 15q^{74} + 6q^{75} + 12q^{76} - 6q^{78} - 3q^{79} - 18q^{82} - 3q^{83} - 3q^{84} - 3q^{85} - 3q^{86} - 3q^{87} + 3q^{88} - 9q^{89} - 15q^{91} + 15q^{92} - 3q^{93} - 6q^{94} + 18q^{95} - 6q^{96} - 24q^{97} - 3q^{98} - 6q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.173648 + 0.984808i −0.122788 + 0.696364i
\(3\) 0.766044 + 0.642788i 0.442276 + 0.371114i
\(4\) −0.939693 0.342020i −0.469846 0.171010i
\(5\) −0.939693 + 0.342020i −0.420243 + 0.152956i
\(6\) −0.766044 + 0.642788i −0.312736 + 0.262417i
\(7\) −0.326352 0.565258i −0.123349 0.213647i 0.797737 0.603005i \(-0.206030\pi\)
−0.921087 + 0.389358i \(0.872697\pi\)
\(8\) 0.500000 0.866025i 0.176777 0.306186i
\(9\) 0.173648 + 0.984808i 0.0578827 + 0.328269i
\(10\) −0.173648 0.984808i −0.0549124 0.311424i
\(11\) −1.43969 + 2.49362i −0.434084 + 0.751855i −0.997220 0.0745088i \(-0.976261\pi\)
0.563137 + 0.826364i \(0.309594\pi\)
\(12\) −0.500000 0.866025i −0.144338 0.250000i
\(13\) −1.26604 + 1.06234i −0.351138 + 0.294639i −0.801247 0.598334i \(-0.795830\pi\)
0.450109 + 0.892974i \(0.351385\pi\)
\(14\) 0.613341 0.223238i 0.163922 0.0596628i
\(15\) −0.939693 0.342020i −0.242628 0.0883092i
\(16\) 0.766044 + 0.642788i 0.191511 + 0.160697i
\(17\) −1.26604 + 7.18009i −0.307061 + 1.74143i 0.306581 + 0.951844i \(0.400815\pi\)
−0.613642 + 0.789584i \(0.710296\pi\)
\(18\) −1.00000 −0.235702
\(19\) −3.79086 + 2.15160i −0.869683 + 0.493611i
\(20\) 1.00000 0.223607
\(21\) 0.113341 0.642788i 0.0247330 0.140268i
\(22\) −2.20574 1.85083i −0.470265 0.394599i
\(23\) −1.61334 0.587208i −0.336405 0.122441i 0.168294 0.985737i \(-0.446174\pi\)
−0.504699 + 0.863296i \(0.668396\pi\)
\(24\) 0.939693 0.342020i 0.191814 0.0698146i
\(25\) 0.766044 0.642788i 0.153209 0.128558i
\(26\) −0.826352 1.43128i −0.162061 0.280698i
\(27\) −0.500000 + 0.866025i −0.0962250 + 0.166667i
\(28\) 0.113341 + 0.642788i 0.0214194 + 0.121475i
\(29\) 0.0282185 + 0.160035i 0.00524004 + 0.0297178i 0.987316 0.158770i \(-0.0507527\pi\)
−0.982076 + 0.188487i \(0.939642\pi\)
\(30\) 0.500000 0.866025i 0.0912871 0.158114i
\(31\) −0.471782 0.817150i −0.0847345 0.146764i 0.820544 0.571584i \(-0.193671\pi\)
−0.905278 + 0.424820i \(0.860338\pi\)
\(32\) −0.766044 + 0.642788i −0.135419 + 0.113630i
\(33\) −2.70574 + 0.984808i −0.471008 + 0.171433i
\(34\) −6.85117 2.49362i −1.17497 0.427652i
\(35\) 0.500000 + 0.419550i 0.0845154 + 0.0709169i
\(36\) 0.173648 0.984808i 0.0289414 0.164135i
\(37\) −7.24897 −1.19172 −0.595862 0.803087i \(-0.703189\pi\)
−0.595862 + 0.803087i \(0.703189\pi\)
\(38\) −1.46064 4.10689i −0.236947 0.666225i
\(39\) −1.65270 −0.264644
\(40\) −0.173648 + 0.984808i −0.0274562 + 0.155712i
\(41\) −0.309278 0.259515i −0.0483011 0.0405294i 0.618318 0.785928i \(-0.287815\pi\)
−0.666619 + 0.745399i \(0.732259\pi\)
\(42\) 0.613341 + 0.223238i 0.0946405 + 0.0344463i
\(43\) 10.6702 3.88365i 1.62720 0.592251i 0.642463 0.766317i \(-0.277913\pi\)
0.984734 + 0.174065i \(0.0556904\pi\)
\(44\) 2.20574 1.85083i 0.332527 0.279024i
\(45\) −0.500000 0.866025i −0.0745356 0.129099i
\(46\) 0.858441 1.48686i 0.126570 0.219226i
\(47\) 1.00727 + 5.71253i 0.146926 + 0.833259i 0.965801 + 0.259286i \(0.0834873\pi\)
−0.818875 + 0.573973i \(0.805402\pi\)
\(48\) 0.173648 + 0.984808i 0.0250640 + 0.142145i
\(49\) 3.28699 5.69323i 0.469570 0.813319i
\(50\) 0.500000 + 0.866025i 0.0707107 + 0.122474i
\(51\) −5.58512 + 4.68647i −0.782074 + 0.656238i
\(52\) 1.55303 0.565258i 0.215367 0.0783872i
\(53\) 9.93629 + 3.61651i 1.36485 + 0.496766i 0.917552 0.397616i \(-0.130163\pi\)
0.447303 + 0.894383i \(0.352385\pi\)
\(54\) −0.766044 0.642788i −0.104245 0.0874723i
\(55\) 0.500000 2.83564i 0.0674200 0.382358i
\(56\) −0.652704 −0.0872212
\(57\) −4.28699 0.788496i −0.567826 0.104439i
\(58\) −0.162504 −0.0213378
\(59\) −0.790859 + 4.48519i −0.102961 + 0.583922i 0.889054 + 0.457802i \(0.151363\pi\)
−0.992015 + 0.126119i \(0.959748\pi\)
\(60\) 0.766044 + 0.642788i 0.0988959 + 0.0829835i
\(61\) −10.8093 3.93426i −1.38399 0.503730i −0.460602 0.887607i \(-0.652366\pi\)
−0.923384 + 0.383877i \(0.874589\pi\)
\(62\) 0.886659 0.322718i 0.112606 0.0409852i
\(63\) 0.500000 0.419550i 0.0629941 0.0528583i
\(64\) −0.500000 0.866025i −0.0625000 0.108253i
\(65\) 0.826352 1.43128i 0.102496 0.177529i
\(66\) −0.500000 2.83564i −0.0615457 0.349043i
\(67\) −0.396459 2.24843i −0.0484352 0.274690i 0.950966 0.309296i \(-0.100093\pi\)
−0.999401 + 0.0346062i \(0.988982\pi\)
\(68\) 3.64543 6.31407i 0.442073 0.765693i
\(69\) −0.858441 1.48686i −0.103344 0.178997i
\(70\) −0.500000 + 0.419550i −0.0597614 + 0.0501458i
\(71\) 4.01114 1.45994i 0.476035 0.173263i −0.0928491 0.995680i \(-0.529597\pi\)
0.568884 + 0.822418i \(0.307375\pi\)
\(72\) 0.939693 + 0.342020i 0.110744 + 0.0403075i
\(73\) 8.73055 + 7.32580i 1.02183 + 0.857420i 0.989857 0.142068i \(-0.0453752\pi\)
0.0319770 + 0.999489i \(0.489820\pi\)
\(74\) 1.25877 7.13884i 0.146329 0.829874i
\(75\) 1.00000 0.115470
\(76\) 4.29813 0.725293i 0.493030 0.0831968i
\(77\) 1.87939 0.214176
\(78\) 0.286989 1.62760i 0.0324951 0.184289i
\(79\) −3.73783 3.13641i −0.420538 0.352874i 0.407830 0.913058i \(-0.366286\pi\)
−0.828368 + 0.560185i \(0.810730\pi\)
\(80\) −0.939693 0.342020i −0.105061 0.0382390i
\(81\) −0.939693 + 0.342020i −0.104410 + 0.0380022i
\(82\) 0.309278 0.259515i 0.0341540 0.0286586i
\(83\) 2.14543 + 3.71599i 0.235492 + 0.407883i 0.959415 0.281997i \(-0.0909967\pi\)
−0.723924 + 0.689880i \(0.757663\pi\)
\(84\) −0.326352 + 0.565258i −0.0356079 + 0.0616747i
\(85\) −1.26604 7.18009i −0.137322 0.778791i
\(86\) 1.97178 + 11.1825i 0.212623 + 1.20584i
\(87\) −0.0812519 + 0.140732i −0.00871112 + 0.0150881i
\(88\) 1.43969 + 2.49362i 0.153472 + 0.265821i
\(89\) 1.91147 1.60392i 0.202616 0.170015i −0.535834 0.844323i \(-0.680003\pi\)
0.738450 + 0.674309i \(0.235558\pi\)
\(90\) 0.939693 0.342020i 0.0990523 0.0360521i
\(91\) 1.01367 + 0.368946i 0.106262 + 0.0386760i
\(92\) 1.31521 + 1.10359i 0.137120 + 0.115057i
\(93\) 0.163848 0.929228i 0.0169902 0.0963565i
\(94\) −5.80066 −0.598292
\(95\) 2.82635 3.31839i 0.289978 0.340460i
\(96\) −1.00000 −0.102062
\(97\) −2.43717 + 13.8219i −0.247457 + 1.40340i 0.567260 + 0.823538i \(0.308003\pi\)
−0.814717 + 0.579859i \(0.803108\pi\)
\(98\) 5.03596 + 4.22567i 0.508709 + 0.426857i
\(99\) −2.70574 0.984808i −0.271937 0.0989769i
\(100\) −0.939693 + 0.342020i −0.0939693 + 0.0342020i
\(101\) −7.01367 + 5.88517i −0.697886 + 0.585596i −0.921171 0.389157i \(-0.872766\pi\)
0.223285 + 0.974753i \(0.428322\pi\)
\(102\) −3.64543 6.31407i −0.360951 0.625186i
\(103\) 8.33022 14.4284i 0.820801 1.42167i −0.0842852 0.996442i \(-0.526861\pi\)
0.905086 0.425228i \(-0.139806\pi\)
\(104\) 0.286989 + 1.62760i 0.0281416 + 0.159599i
\(105\) 0.113341 + 0.642788i 0.0110609 + 0.0627296i
\(106\) −5.28699 + 9.15733i −0.513518 + 0.889439i
\(107\) 3.85457 + 6.67631i 0.372635 + 0.645423i 0.989970 0.141277i \(-0.0451209\pi\)
−0.617335 + 0.786701i \(0.711788\pi\)
\(108\) 0.766044 0.642788i 0.0737127 0.0618523i
\(109\) −7.71213 + 2.80699i −0.738688 + 0.268861i −0.683838 0.729634i \(-0.739690\pi\)
−0.0548505 + 0.998495i \(0.517468\pi\)
\(110\) 2.70574 + 0.984808i 0.257982 + 0.0938977i
\(111\) −5.55303 4.65955i −0.527071 0.442265i
\(112\) 0.113341 0.642788i 0.0107097 0.0607377i
\(113\) 10.0446 0.944914 0.472457 0.881354i \(-0.343367\pi\)
0.472457 + 0.881354i \(0.343367\pi\)
\(114\) 1.52094 4.08494i 0.142450 0.382590i
\(115\) 1.71688 0.160100
\(116\) 0.0282185 0.160035i 0.00262002 0.0148589i
\(117\) −1.26604 1.06234i −0.117046 0.0982131i
\(118\) −4.27972 1.55769i −0.393980 0.143397i
\(119\) 4.47178 1.62760i 0.409928 0.149201i
\(120\) −0.766044 + 0.642788i −0.0699300 + 0.0586782i
\(121\) 1.35457 + 2.34618i 0.123143 + 0.213290i
\(122\) 5.75150 9.96188i 0.520716 0.901907i
\(123\) −0.0701076 0.397600i −0.00632139 0.0358504i
\(124\) 0.163848 + 0.929228i 0.0147140 + 0.0834472i
\(125\) −0.500000 + 0.866025i −0.0447214 + 0.0774597i
\(126\) 0.326352 + 0.565258i 0.0290737 + 0.0503572i
\(127\) 2.52094 2.11532i 0.223698 0.187705i −0.524050 0.851687i \(-0.675580\pi\)
0.747748 + 0.663983i \(0.231135\pi\)
\(128\) 0.939693 0.342020i 0.0830579 0.0302306i
\(129\) 10.6702 + 3.88365i 0.939463 + 0.341936i
\(130\) 1.26604 + 1.06234i 0.111039 + 0.0931732i
\(131\) 1.18479 6.71929i 0.103516 0.587067i −0.888287 0.459289i \(-0.848104\pi\)
0.991803 0.127778i \(-0.0407846\pi\)
\(132\) 2.87939 0.250618
\(133\) 2.45336 + 1.44063i 0.212734 + 0.124919i
\(134\) 2.28312 0.197231
\(135\) 0.173648 0.984808i 0.0149453 0.0847588i
\(136\) 5.58512 + 4.68647i 0.478920 + 0.401862i
\(137\) −9.55690 3.47843i −0.816501 0.297182i −0.100195 0.994968i \(-0.531947\pi\)
−0.716307 + 0.697786i \(0.754169\pi\)
\(138\) 1.61334 0.587208i 0.137337 0.0499865i
\(139\) −4.63429 + 3.88863i −0.393075 + 0.329829i −0.817810 0.575489i \(-0.804812\pi\)
0.424735 + 0.905318i \(0.360367\pi\)
\(140\) −0.326352 0.565258i −0.0275818 0.0477730i
\(141\) −2.90033 + 5.02352i −0.244252 + 0.423057i
\(142\) 0.741230 + 4.20372i 0.0622026 + 0.352768i
\(143\) −0.826352 4.68647i −0.0691030 0.391903i
\(144\) −0.500000 + 0.866025i −0.0416667 + 0.0721688i
\(145\) −0.0812519 0.140732i −0.00674760 0.0116872i
\(146\) −8.73055 + 7.32580i −0.722546 + 0.606288i
\(147\) 6.17752 2.24843i 0.509513 0.185448i
\(148\) 6.81180 + 2.47929i 0.559927 + 0.203797i
\(149\) 11.1643 + 9.36797i 0.914616 + 0.767454i 0.972992 0.230841i \(-0.0741476\pi\)
−0.0583753 + 0.998295i \(0.518592\pi\)
\(150\) −0.173648 + 0.984808i −0.0141783 + 0.0804092i
\(151\) 13.5449 1.10227 0.551133 0.834417i \(-0.314196\pi\)
0.551133 + 0.834417i \(0.314196\pi\)
\(152\) −0.0320889 + 4.35878i −0.00260275 + 0.353544i
\(153\) −7.29086 −0.589431
\(154\) −0.326352 + 1.85083i −0.0262982 + 0.149144i
\(155\) 0.722811 + 0.606511i 0.0580576 + 0.0487161i
\(156\) 1.55303 + 0.565258i 0.124342 + 0.0452569i
\(157\) 20.6805 7.52709i 1.65048 0.600727i 0.661659 0.749805i \(-0.269853\pi\)
0.988825 + 0.149078i \(0.0476304\pi\)
\(158\) 3.73783 3.13641i 0.297365 0.249519i
\(159\) 5.28699 + 9.15733i 0.419285 + 0.726224i
\(160\) 0.500000 0.866025i 0.0395285 0.0684653i
\(161\) 0.194593 + 1.10359i 0.0153361 + 0.0869751i
\(162\) −0.173648 0.984808i −0.0136431 0.0773738i
\(163\) 0.724155 1.25427i 0.0567202 0.0982423i −0.836271 0.548316i \(-0.815269\pi\)
0.892991 + 0.450074i \(0.148602\pi\)
\(164\) 0.201867 + 0.349643i 0.0157631 + 0.0273026i
\(165\) 2.20574 1.85083i 0.171716 0.144087i
\(166\) −4.03209 + 1.46756i −0.312951 + 0.113905i
\(167\) 17.7690 + 6.46740i 1.37501 + 0.500462i 0.920662 0.390362i \(-0.127650\pi\)
0.454348 + 0.890824i \(0.349872\pi\)
\(168\) −0.500000 0.419550i −0.0385758 0.0323690i
\(169\) −1.78312 + 10.1126i −0.137163 + 0.777890i
\(170\) 7.29086 0.559183
\(171\) −2.77719 3.35965i −0.212377 0.256919i
\(172\) −11.3550 −0.865813
\(173\) −0.200522 + 1.13722i −0.0152454 + 0.0864612i −0.991481 0.130250i \(-0.958422\pi\)
0.976236 + 0.216711i \(0.0695331\pi\)
\(174\) −0.124485 0.104455i −0.00943719 0.00791875i
\(175\) −0.613341 0.223238i −0.0463642 0.0168752i
\(176\) −2.70574 + 0.984808i −0.203953 + 0.0742327i
\(177\) −3.48886 + 2.92750i −0.262238 + 0.220044i
\(178\) 1.24763 + 2.16095i 0.0935135 + 0.161970i
\(179\) 4.12836 7.15052i 0.308568 0.534455i −0.669482 0.742829i \(-0.733484\pi\)
0.978049 + 0.208374i \(0.0668170\pi\)
\(180\) 0.173648 + 0.984808i 0.0129430 + 0.0734032i
\(181\) 0.370767 + 2.10272i 0.0275589 + 0.156294i 0.995482 0.0949534i \(-0.0302702\pi\)
−0.967923 + 0.251248i \(0.919159\pi\)
\(182\) −0.539363 + 0.934204i −0.0399802 + 0.0692478i
\(183\) −5.75150 9.96188i −0.425163 0.736404i
\(184\) −1.31521 + 1.10359i −0.0969584 + 0.0813577i
\(185\) 6.81180 2.47929i 0.500814 0.182281i
\(186\) 0.886659 + 0.322718i 0.0650130 + 0.0236628i
\(187\) −16.0817 13.4942i −1.17601 0.986791i
\(188\) 1.00727 5.71253i 0.0734630 0.416629i
\(189\) 0.652704 0.0474772
\(190\) 2.77719 + 3.35965i 0.201478 + 0.243734i
\(191\) −4.06418 −0.294074 −0.147037 0.989131i \(-0.546974\pi\)
−0.147037 + 0.989131i \(0.546974\pi\)
\(192\) 0.173648 0.984808i 0.0125320 0.0710724i
\(193\) 0.115400 + 0.0968323i 0.00830669 + 0.00697014i 0.646932 0.762548i \(-0.276052\pi\)
−0.638625 + 0.769518i \(0.720496\pi\)
\(194\) −13.1887 4.80028i −0.946891 0.344640i
\(195\) 1.55303 0.565258i 0.111215 0.0404790i
\(196\) −5.03596 + 4.22567i −0.359711 + 0.301834i
\(197\) −2.13563 3.69902i −0.152157 0.263544i 0.779863 0.625950i \(-0.215289\pi\)
−0.932020 + 0.362406i \(0.881955\pi\)
\(198\) 1.43969 2.49362i 0.102314 0.177214i
\(199\) 0.222811 + 1.26363i 0.0157947 + 0.0895760i 0.991686 0.128680i \(-0.0410742\pi\)
−0.975891 + 0.218257i \(0.929963\pi\)
\(200\) −0.173648 0.984808i −0.0122788 0.0696364i
\(201\) 1.14156 1.97724i 0.0805194 0.139464i
\(202\) −4.57785 7.92907i −0.322096 0.557887i
\(203\) 0.0812519 0.0681784i 0.00570277 0.00478519i
\(204\) 6.85117 2.49362i 0.479678 0.174588i
\(205\) 0.379385 + 0.138085i 0.0264974 + 0.00964427i
\(206\) 12.7626 + 10.7091i 0.889215 + 0.746140i
\(207\) 0.298133 1.69080i 0.0207217 0.117519i
\(208\) −1.65270 −0.114594
\(209\) 0.0923963 12.5506i 0.00639118 0.868144i
\(210\) −0.652704 −0.0450408
\(211\) 1.17752 6.67804i 0.0810637 0.459735i −0.917073 0.398719i \(-0.869455\pi\)
0.998137 0.0610160i \(-0.0194341\pi\)
\(212\) −8.10014 6.79682i −0.556320 0.466808i
\(213\) 4.01114 + 1.45994i 0.274839 + 0.100033i
\(214\) −7.24422 + 2.63668i −0.495205 + 0.180240i
\(215\) −8.69846 + 7.29888i −0.593230 + 0.497779i
\(216\) 0.500000 + 0.866025i 0.0340207 + 0.0589256i
\(217\) −0.307934 + 0.533356i −0.0209039 + 0.0362066i
\(218\) −1.42514 8.08240i −0.0965230 0.547409i
\(219\) 1.97906 + 11.2238i 0.133732 + 0.758433i
\(220\) −1.43969 + 2.49362i −0.0970641 + 0.168120i
\(221\) −6.02481 10.4353i −0.405273 0.701953i
\(222\) 5.55303 4.65955i 0.372695 0.312728i
\(223\) 26.5390 9.65939i 1.77718 0.646841i 0.777337 0.629084i \(-0.216570\pi\)
0.999842 0.0177565i \(-0.00565238\pi\)
\(224\) 0.613341 + 0.223238i 0.0409806 + 0.0149157i
\(225\) 0.766044 + 0.642788i 0.0510696 + 0.0428525i
\(226\) −1.74422 + 9.89198i −0.116024 + 0.658005i
\(227\) −21.5645 −1.43128 −0.715642 0.698467i \(-0.753866\pi\)
−0.715642 + 0.698467i \(0.753866\pi\)
\(228\) 3.75877 + 2.20718i 0.248931 + 0.146174i
\(229\) −11.1206 −0.734871 −0.367435 0.930049i \(-0.619764\pi\)
−0.367435 + 0.930049i \(0.619764\pi\)
\(230\) −0.298133 + 1.69080i −0.0196583 + 0.111488i
\(231\) 1.43969 + 1.20805i 0.0947248 + 0.0794836i
\(232\) 0.152704 + 0.0555796i 0.0100255 + 0.00364898i
\(233\) −14.6604 + 5.33597i −0.960438 + 0.349571i −0.774205 0.632935i \(-0.781850\pi\)
−0.186233 + 0.982506i \(0.559628\pi\)
\(234\) 1.26604 1.06234i 0.0827639 0.0694472i
\(235\) −2.90033 5.02352i −0.189197 0.327698i
\(236\) 2.27719 3.94421i 0.148232 0.256746i
\(237\) −0.847296 4.80526i −0.0550378 0.312135i
\(238\) 0.826352 + 4.68647i 0.0535644 + 0.303779i
\(239\) 10.0064 17.3316i 0.647260 1.12109i −0.336515 0.941678i \(-0.609248\pi\)
0.983775 0.179409i \(-0.0574185\pi\)
\(240\) −0.500000 0.866025i −0.0322749 0.0559017i
\(241\) −21.5535 + 18.0855i −1.38838 + 1.16499i −0.422393 + 0.906413i \(0.638810\pi\)
−0.965990 + 0.258579i \(0.916746\pi\)
\(242\) −2.54576 + 0.926581i −0.163648 + 0.0595629i
\(243\) −0.939693 0.342020i −0.0602813 0.0219406i
\(244\) 8.81180 + 7.39398i 0.564118 + 0.473351i
\(245\) −1.14156 + 6.47410i −0.0729315 + 0.413615i
\(246\) 0.403733 0.0257411
\(247\) 2.51367 6.75119i 0.159941 0.429568i
\(248\) −0.943563 −0.0599163
\(249\) −0.745100 + 4.22567i −0.0472188 + 0.267791i
\(250\) −0.766044 0.642788i −0.0484489 0.0406535i
\(251\) −24.1250 8.78076i −1.52275 0.554237i −0.560919 0.827870i \(-0.689552\pi\)
−0.961834 + 0.273633i \(0.911774\pi\)
\(252\) −0.613341 + 0.223238i −0.0386368 + 0.0140627i
\(253\) 3.78699 3.17766i 0.238086 0.199778i
\(254\) 1.64543 + 2.84997i 0.103243 + 0.178823i
\(255\) 3.64543 6.31407i 0.228286 0.395402i
\(256\) 0.173648 + 0.984808i 0.0108530 + 0.0615505i
\(257\) 4.07011 + 23.0827i 0.253886 + 1.43986i 0.798915 + 0.601444i \(0.205408\pi\)
−0.545029 + 0.838417i \(0.683481\pi\)
\(258\) −5.67752 + 9.83375i −0.353467 + 0.612223i
\(259\) 2.36571 + 4.09754i 0.146998 + 0.254609i
\(260\) −1.26604 + 1.06234i −0.0785167 + 0.0658834i
\(261\) −0.152704 + 0.0555796i −0.00945212 + 0.00344029i
\(262\) 6.41147 + 2.33359i 0.396102 + 0.144169i
\(263\) −15.2613 12.8057i −0.941052 0.789636i 0.0367162 0.999326i \(-0.488310\pi\)
−0.977768 + 0.209689i \(0.932755\pi\)
\(264\) −0.500000 + 2.83564i −0.0307729 + 0.174522i
\(265\) −10.5740 −0.649554
\(266\) −1.84477 + 2.16593i −0.113110 + 0.132802i
\(267\) 2.49525 0.152707
\(268\) −0.396459 + 2.24843i −0.0242176 + 0.137345i
\(269\) −11.8216 9.91950i −0.720776 0.604803i 0.206824 0.978378i \(-0.433687\pi\)
−0.927600 + 0.373575i \(0.878132\pi\)
\(270\) 0.939693 + 0.342020i 0.0571879 + 0.0208147i
\(271\) 21.1951 7.71437i 1.28751 0.468615i 0.394600 0.918853i \(-0.370883\pi\)
0.892908 + 0.450238i \(0.148661\pi\)
\(272\) −5.58512 + 4.68647i −0.338648 + 0.284159i
\(273\) 0.539363 + 0.934204i 0.0326437 + 0.0565406i
\(274\) 5.08512 8.80769i 0.307203 0.532092i
\(275\) 0.500000 + 2.83564i 0.0301511 + 0.170996i
\(276\) 0.298133 + 1.69080i 0.0179455 + 0.101774i
\(277\) −9.38713 + 16.2590i −0.564018 + 0.976907i 0.433123 + 0.901335i \(0.357412\pi\)
−0.997140 + 0.0755724i \(0.975922\pi\)
\(278\) −3.02481 5.23913i −0.181416 0.314222i
\(279\) 0.722811 0.606511i 0.0432736 0.0363108i
\(280\) 0.613341 0.223238i 0.0366541 0.0133410i
\(281\) −15.9338 5.79942i −0.950529 0.345964i −0.180213 0.983628i \(-0.557679\pi\)
−0.770315 + 0.637663i \(0.779901\pi\)
\(282\) −4.44356 3.72859i −0.264610 0.222034i
\(283\) 2.87299 16.2935i 0.170781 0.968550i −0.772120 0.635477i \(-0.780803\pi\)
0.942901 0.333073i \(-0.108085\pi\)
\(284\) −4.26857 −0.253293
\(285\) 4.29813 0.725293i 0.254599 0.0429626i
\(286\) 4.75877 0.281392
\(287\) −0.0457595 + 0.259515i −0.00270110 + 0.0153187i
\(288\) −0.766044 0.642788i −0.0451396 0.0378766i
\(289\) −33.9761 12.3663i −1.99860 0.727429i
\(290\) 0.152704 0.0555796i 0.00896707 0.00326375i
\(291\) −10.7515 + 9.02158i −0.630264 + 0.528854i
\(292\) −5.69846 9.87003i −0.333477 0.577600i
\(293\) −9.04576 + 15.6677i −0.528459 + 0.915318i 0.470991 + 0.882138i \(0.343897\pi\)
−0.999449 + 0.0331794i \(0.989437\pi\)
\(294\) 1.14156 + 6.47410i 0.0665771 + 0.377577i
\(295\) −0.790859 4.48519i −0.0460456 0.261138i
\(296\) −3.62449 + 6.27779i −0.210669 + 0.364889i
\(297\) −1.43969 2.49362i −0.0835394 0.144695i
\(298\) −11.1643 + 9.36797i −0.646731 + 0.542672i
\(299\) 2.66637 0.970481i 0.154200 0.0561244i
\(300\) −0.939693 0.342020i −0.0542532 0.0197465i
\(301\) −5.67752 4.76400i −0.327247 0.274593i
\(302\) −2.35204 + 13.3391i −0.135345 + 0.767579i
\(303\) −9.15570 −0.525981
\(304\) −4.28699 0.788496i −0.245876 0.0452233i
\(305\) 11.5030 0.658659
\(306\) 1.26604 7.18009i 0.0723749 0.410459i
\(307\) 13.9704 + 11.7226i 0.797335 + 0.669043i 0.947549 0.319610i \(-0.103552\pi\)
−0.150214 + 0.988653i \(0.547996\pi\)
\(308\) −1.76604 0.642788i −0.100630 0.0366262i
\(309\) 15.6557 5.69821i 0.890621 0.324160i
\(310\) −0.722811 + 0.606511i −0.0410529 + 0.0344475i
\(311\) −11.2738 19.5268i −0.639278 1.10726i −0.985592 0.169143i \(-0.945900\pi\)
0.346314 0.938119i \(-0.387433\pi\)
\(312\) −0.826352 + 1.43128i −0.0467830 + 0.0810305i
\(313\) 4.28224 + 24.2858i 0.242047 + 1.37271i 0.827253 + 0.561830i \(0.189902\pi\)
−0.585206 + 0.810885i \(0.698986\pi\)
\(314\) 3.82160 + 21.6734i 0.215666 + 1.22310i
\(315\) −0.326352 + 0.565258i −0.0183878 + 0.0318487i
\(316\) 2.43969 + 4.22567i 0.137243 + 0.237713i
\(317\) 12.4855 10.4765i 0.701253 0.588421i −0.220877 0.975302i \(-0.570892\pi\)
0.922130 + 0.386881i \(0.126447\pi\)
\(318\) −9.93629 + 3.61651i −0.557199 + 0.202804i
\(319\) −0.439693 0.160035i −0.0246181 0.00896024i
\(320\) 0.766044 + 0.642788i 0.0428232 + 0.0359329i
\(321\) −1.33868 + 7.59202i −0.0747177 + 0.423745i
\(322\) −1.12061 −0.0624494
\(323\) −10.6493 29.9428i −0.592543 1.66606i
\(324\) 1.00000 0.0555556
\(325\) −0.286989 + 1.62760i −0.0159193 + 0.0902827i
\(326\) 1.10947 + 0.930956i 0.0614479 + 0.0515609i
\(327\) −7.71213 2.80699i −0.426482 0.155227i
\(328\) −0.379385 + 0.138085i −0.0209480 + 0.00762447i
\(329\) 2.90033 2.43367i 0.159900 0.134172i
\(330\) 1.43969 + 2.49362i 0.0792525 + 0.137269i
\(331\) −3.21941 + 5.57618i −0.176955 + 0.306494i −0.940836 0.338862i \(-0.889958\pi\)
0.763881 + 0.645357i \(0.223291\pi\)
\(332\) −0.745100 4.22567i −0.0408927 0.231914i
\(333\) −1.25877 7.13884i −0.0689802 0.391206i
\(334\) −9.45471 + 16.3760i −0.517339 + 0.896057i
\(335\) 1.14156 + 1.97724i 0.0623700 + 0.108028i
\(336\) 0.500000 0.419550i 0.0272772 0.0228883i
\(337\) 18.5767 6.76135i 1.01194 0.368314i 0.217760 0.976002i \(-0.430125\pi\)
0.794176 + 0.607688i \(0.207903\pi\)
\(338\) −9.64930 3.51206i −0.524853 0.191031i
\(339\) 7.69459 + 6.45653i 0.417913 + 0.350671i
\(340\) −1.26604 + 7.18009i −0.0686609 + 0.389395i
\(341\) 2.71688 0.147127
\(342\) 3.79086 2.15160i 0.204986 0.116345i
\(343\) −8.85978 −0.478383
\(344\) 1.97178 11.1825i 0.106311 0.602922i
\(345\) 1.31521 + 1.10359i 0.0708084 + 0.0594153i
\(346\) −1.08512 0.394952i −0.0583365 0.0212328i
\(347\) −27.4722 + 9.99908i −1.47479 + 0.536779i −0.949396 0.314082i \(-0.898303\pi\)
−0.525392 + 0.850861i \(0.676081\pi\)
\(348\) 0.124485 0.104455i 0.00667310 0.00559940i
\(349\) 8.26264 + 14.3113i 0.442289 + 0.766067i 0.997859 0.0654028i \(-0.0208332\pi\)
−0.555570 + 0.831470i \(0.687500\pi\)
\(350\) 0.326352 0.565258i 0.0174442 0.0302143i
\(351\) −0.286989 1.62760i −0.0153183 0.0868746i
\(352\) −0.500000 2.83564i −0.0266501 0.151140i
\(353\) −2.38413 + 4.12944i −0.126895 + 0.219788i −0.922472 0.386064i \(-0.873834\pi\)
0.795577 + 0.605852i \(0.207168\pi\)
\(354\) −2.27719 3.94421i −0.121031 0.209632i
\(355\) −3.26991 + 2.74378i −0.173549 + 0.145625i
\(356\) −2.34477 + 0.853427i −0.124273 + 0.0452315i
\(357\) 4.47178 + 1.62760i 0.236672 + 0.0861415i
\(358\) 6.32501 + 5.30731i 0.334287 + 0.280500i
\(359\) −5.80423 + 32.9174i −0.306335 + 1.73731i 0.310817 + 0.950470i \(0.399397\pi\)
−0.617152 + 0.786844i \(0.711714\pi\)
\(360\) −1.00000 −0.0527046
\(361\) 9.74123 16.3128i 0.512696 0.858570i
\(362\) −2.13516 −0.112222
\(363\) −0.470437 + 2.66798i −0.0246916 + 0.140033i
\(364\) −0.826352 0.693392i −0.0433126 0.0363436i
\(365\) −10.7096 3.89798i −0.560566 0.204030i
\(366\) 10.8093 3.93426i 0.565010 0.205647i
\(367\) 4.23577 3.55423i 0.221105 0.185529i −0.525506 0.850790i \(-0.676124\pi\)
0.746611 + 0.665261i \(0.231680\pi\)
\(368\) −0.858441 1.48686i −0.0447493 0.0775081i
\(369\) 0.201867 0.349643i 0.0105088 0.0182017i
\(370\) 1.25877 + 7.13884i 0.0654404 + 0.371131i
\(371\) −1.19846 6.79682i −0.0622211 0.352873i
\(372\) −0.471782 + 0.817150i −0.0244607 + 0.0423672i
\(373\) −6.22462 10.7814i −0.322299 0.558238i 0.658663 0.752438i \(-0.271122\pi\)
−0.980962 + 0.194200i \(0.937789\pi\)
\(374\) 16.0817 13.4942i 0.831566 0.697767i
\(375\) −0.939693 + 0.342020i −0.0485255 + 0.0176618i
\(376\) 5.45084 + 1.98394i 0.281105 + 0.102314i
\(377\) −0.205737 0.172634i −0.0105960 0.00889110i
\(378\) −0.113341 + 0.642788i −0.00582962 + 0.0330614i
\(379\) 13.2098 0.678540 0.339270 0.940689i \(-0.389820\pi\)
0.339270 + 0.940689i \(0.389820\pi\)
\(380\) −3.79086 + 2.15160i −0.194467 + 0.110375i
\(381\) 3.29086 0.168596
\(382\) 0.705737 4.00243i 0.0361086 0.204782i
\(383\) −20.7310 17.3954i −1.05931 0.888863i −0.0652644 0.997868i \(-0.520789\pi\)
−0.994041 + 0.109005i \(0.965234\pi\)
\(384\) 0.939693 + 0.342020i 0.0479535 + 0.0174536i
\(385\) −1.76604 + 0.642788i −0.0900060 + 0.0327595i
\(386\) −0.115400 + 0.0968323i −0.00587372 + 0.00492863i
\(387\) 5.67752 + 9.83375i 0.288604 + 0.499878i
\(388\) 7.01754 12.1547i 0.356262 0.617063i
\(389\) 2.58424 + 14.6560i 0.131026 + 0.743088i 0.977545 + 0.210728i \(0.0675835\pi\)
−0.846518 + 0.532360i \(0.821305\pi\)
\(390\) 0.286989 + 1.62760i 0.0145323 + 0.0824165i
\(391\) 6.25877 10.8405i 0.316520 0.548228i
\(392\) −3.28699 5.69323i −0.166018 0.287552i
\(393\) 5.22668 4.38571i 0.263651 0.221230i
\(394\) 4.01367 1.46086i 0.202206 0.0735969i
\(395\) 4.58512 + 1.66885i 0.230703 + 0.0839689i
\(396\) 2.20574 + 1.85083i 0.110842 + 0.0930079i
\(397\) −4.13041 + 23.4247i −0.207300 + 1.17565i 0.686480 + 0.727148i \(0.259155\pi\)
−0.893780 + 0.448506i \(0.851956\pi\)
\(398\) −1.28312 −0.0643169
\(399\) 0.953363 + 2.68058i 0.0477279 + 0.134197i
\(400\) 1.00000 0.0500000
\(401\) 0.159978 0.907278i 0.00798890 0.0453073i −0.980553 0.196256i \(-0.937122\pi\)
0.988542 + 0.150949i \(0.0482328\pi\)
\(402\) 1.74897 + 1.46756i 0.0872307 + 0.0731953i
\(403\) 1.46538 + 0.533356i 0.0729960 + 0.0265684i
\(404\) 8.60354 3.13143i 0.428042 0.155795i
\(405\) 0.766044 0.642788i 0.0380651 0.0319404i
\(406\) 0.0530334 + 0.0918566i 0.00263200 + 0.00455877i
\(407\) 10.4363 18.0762i 0.517308 0.896003i
\(408\) 1.26604 + 7.18009i 0.0626785 + 0.355468i
\(409\) −1.79339 10.1708i −0.0886772 0.502913i −0.996502 0.0835646i \(-0.973370\pi\)
0.907825 0.419349i \(-0.137742\pi\)
\(410\) −0.201867 + 0.349643i −0.00996948 + 0.0172677i
\(411\) −5.08512 8.80769i −0.250831 0.434451i
\(412\) −12.7626 + 10.7091i −0.628770 + 0.527601i
\(413\) 2.79339 1.01671i 0.137454 0.0500290i
\(414\) 1.61334 + 0.587208i 0.0792914 + 0.0288597i
\(415\) −3.28699 2.75811i −0.161352 0.135390i
\(416\) 0.286989 1.62760i 0.0140708 0.0797994i
\(417\) −6.04963 −0.296252
\(418\) 12.3439 + 2.27038i 0.603760 + 0.111048i
\(419\) −0.568926 −0.0277938 −0.0138969 0.999903i \(-0.504424\pi\)
−0.0138969 + 0.999903i \(0.504424\pi\)
\(420\) 0.113341 0.642788i 0.00553046 0.0313648i
\(421\) −9.80381 8.22638i −0.477809 0.400929i 0.371825 0.928303i \(-0.378732\pi\)
−0.849633 + 0.527374i \(0.823177\pi\)
\(422\) 6.37211 + 2.31926i 0.310190 + 0.112900i
\(423\) −5.45084 + 1.98394i −0.265029 + 0.0964626i
\(424\) 8.10014 6.79682i 0.393377 0.330083i
\(425\) 3.64543 + 6.31407i 0.176829 + 0.306277i
\(426\) −2.13429 + 3.69669i −0.103406 + 0.179105i
\(427\) 1.30376 + 7.39398i 0.0630933 + 0.357820i
\(428\) −1.33868 7.59202i −0.0647075 0.366974i
\(429\) 2.37939 4.12122i 0.114878 0.198974i
\(430\) −5.67752 9.83375i −0.273794 0.474226i
\(431\) 20.7324 17.3965i 0.998643 0.837961i 0.0118469 0.999930i \(-0.496229\pi\)
0.986796 + 0.161969i \(0.0517845\pi\)
\(432\) −0.939693 + 0.342020i −0.0452110 + 0.0164555i
\(433\) 23.8704 + 8.68810i 1.14714 + 0.417523i 0.844486 0.535578i \(-0.179906\pi\)
0.302650 + 0.953102i \(0.402129\pi\)
\(434\) −0.471782 0.395872i −0.0226462 0.0190024i
\(435\) 0.0282185 0.160035i 0.00135297 0.00767309i
\(436\) 8.20708 0.393048
\(437\) 7.37939 1.24524i 0.353004 0.0595680i
\(438\) −11.3969 −0.544566
\(439\) 2.28880 12.9804i 0.109238 0.619522i −0.880204 0.474596i \(-0.842594\pi\)
0.989442 0.144927i \(-0.0462946\pi\)
\(440\) −2.20574 1.85083i −0.105154 0.0882350i
\(441\) 6.17752 + 2.24843i 0.294168 + 0.107068i
\(442\) 11.3229 4.12122i 0.538578 0.196026i
\(443\) −21.2049 + 17.7930i −1.00747 + 0.845370i −0.988002 0.154440i \(-0.950643\pi\)
−0.0194711 + 0.999810i \(0.506198\pi\)
\(444\) 3.62449 + 6.27779i 0.172010 + 0.297931i
\(445\) −1.24763 + 2.16095i −0.0591432 + 0.102439i
\(446\) 4.90420 + 27.8131i 0.232221 + 1.31699i
\(447\) 2.53074 + 14.3526i 0.119700 + 0.678853i
\(448\) −0.326352 + 0.565258i −0.0154187 + 0.0267059i
\(449\) 9.91013 + 17.1648i 0.467688 + 0.810059i 0.999318 0.0369172i \(-0.0117538\pi\)
−0.531630 + 0.846976i \(0.678420\pi\)
\(450\) −0.766044 + 0.642788i −0.0361117 + 0.0303013i
\(451\) 1.09240 0.397600i 0.0514389 0.0187222i
\(452\) −9.43882 3.43545i −0.443965 0.161590i
\(453\) 10.3760 + 8.70648i 0.487506 + 0.409066i
\(454\) 3.74463 21.2369i 0.175744 0.996696i
\(455\) −1.07873 −0.0505714
\(456\) −2.82635 + 3.31839i −0.132356 + 0.155398i
\(457\) 7.76651 0.363302 0.181651 0.983363i \(-0.441856\pi\)
0.181651 + 0.983363i \(0.441856\pi\)
\(458\) 1.93107 10.9517i 0.0902332 0.511738i
\(459\) −5.58512 4.68647i −0.260691 0.218746i
\(460\) −1.61334 0.587208i −0.0752224 0.0273787i
\(461\) 25.4770 9.27287i 1.18658 0.431881i 0.328060 0.944657i \(-0.393605\pi\)
0.858522 + 0.512776i \(0.171383\pi\)
\(462\) −1.43969 + 1.20805i −0.0669806 + 0.0562034i
\(463\) 5.27197 + 9.13133i 0.245009 + 0.424369i 0.962134 0.272576i \(-0.0878756\pi\)
−0.717125 + 0.696945i \(0.754542\pi\)
\(464\) −0.0812519 + 0.140732i −0.00377203 + 0.00653334i
\(465\) 0.163848 + 0.929228i 0.00759827 + 0.0430919i
\(466\) −2.70914 15.3643i −0.125499 0.711737i
\(467\) −1.79426 + 3.10775i −0.0830286 + 0.143810i −0.904549 0.426369i \(-0.859793\pi\)
0.821521 + 0.570178i \(0.193126\pi\)
\(468\) 0.826352 + 1.43128i 0.0381981 + 0.0661611i
\(469\) −1.14156 + 0.957882i −0.0527123 + 0.0442309i
\(470\) 5.45084 1.98394i 0.251428 0.0915124i
\(471\) 20.6805 + 7.52709i 0.952908 + 0.346830i
\(472\) 3.48886 + 2.92750i 0.160588 + 0.134749i
\(473\) −5.67752 + 32.1988i −0.261053 + 1.48050i
\(474\) 4.87939 0.224118
\(475\) −1.52094 + 4.08494i −0.0697857 + 0.187430i
\(476\) −4.75877 −0.218118
\(477\) −1.83615 + 10.4133i −0.0840716 + 0.476794i
\(478\) 15.3307 + 12.8640i 0.701209 + 0.588385i
\(479\) 1.07650 + 0.391815i 0.0491867 + 0.0179025i 0.366496 0.930419i \(-0.380557\pi\)
−0.317310 + 0.948322i \(0.602779\pi\)
\(480\) 0.939693 0.342020i 0.0428909 0.0156110i
\(481\) 9.17752 7.70085i 0.418459 0.351129i
\(482\) −14.0680 24.3666i −0.640782 1.10987i
\(483\) −0.560307 + 0.970481i −0.0254949 + 0.0441584i
\(484\) −0.470437 2.66798i −0.0213835 0.121272i
\(485\) −2.43717 13.8219i −0.110666 0.627618i
\(486\) 0.500000 0.866025i 0.0226805 0.0392837i
\(487\) −1.81773 3.14841i −0.0823694 0.142668i 0.821898 0.569635i \(-0.192915\pi\)
−0.904267 + 0.426967i \(0.859582\pi\)
\(488\) −8.81180 + 7.39398i −0.398892 + 0.334710i
\(489\) 1.36097 0.495351i 0.0615451 0.0224006i
\(490\) −6.17752 2.24843i −0.279072 0.101574i
\(491\) 8.26193 + 6.93258i 0.372855 + 0.312863i 0.809890 0.586582i \(-0.199527\pi\)
−0.437034 + 0.899445i \(0.643971\pi\)
\(492\) −0.0701076 + 0.397600i −0.00316069 + 0.0179252i
\(493\) −1.18479 −0.0533604
\(494\) 6.21213 + 3.64781i 0.279497 + 0.164123i
\(495\) 2.87939 0.129419
\(496\) 0.163848 0.929228i 0.00735699 0.0417236i
\(497\) −2.13429 1.79088i −0.0957358 0.0803319i
\(498\) −4.03209 1.46756i −0.180682 0.0657630i
\(499\) 7.66860 2.79114i 0.343293 0.124949i −0.164619 0.986357i \(-0.552639\pi\)
0.507913 + 0.861409i \(0.330417\pi\)
\(500\) 0.766044 0.642788i 0.0342585 0.0287463i
\(501\) 9.45471 + 16.3760i 0.422405 + 0.731627i
\(502\) 12.8366 22.2337i 0.572926 0.992338i
\(503\) 5.01872 + 28.4626i 0.223774 + 1.26908i 0.865015 + 0.501745i \(0.167309\pi\)
−0.641242 + 0.767339i \(0.721580\pi\)
\(504\) −0.113341 0.642788i −0.00504860 0.0286320i
\(505\) 4.57785 7.92907i 0.203712 0.352839i
\(506\) 2.47178 + 4.28125i 0.109884 + 0.190325i
\(507\) −7.86618 + 6.60051i −0.349349 + 0.293139i
\(508\) −3.09240 + 1.12554i −0.137203 + 0.0499378i
\(509\) −13.5963 4.94864i −0.602644 0.219344i 0.0226376 0.999744i \(-0.492794\pi\)
−0.625281 + 0.780399i \(0.715016\pi\)
\(510\) 5.58512 + 4.68647i 0.247313 + 0.207521i
\(511\) 1.29174 7.32580i 0.0571431 0.324074i
\(512\) −1.00000 −0.0441942
\(513\) 0.0320889 4.35878i 0.00141676 0.192445i
\(514\) −23.4388 −1.03384
\(515\) −2.89306 + 16.4073i −0.127483 + 0.722994i
\(516\) −8.69846 7.29888i −0.382928 0.321315i
\(517\) −15.6951 5.71253i −0.690268 0.251237i
\(518\) −4.44609 + 1.61824i −0.195350 + 0.0711016i
\(519\) −0.884600 + 0.742267i −0.0388296 + 0.0325819i
\(520\) −0.826352 1.43128i −0.0362379 0.0627659i
\(521\) 14.3675 24.8853i 0.629453 1.09024i −0.358209 0.933641i \(-0.616612\pi\)
0.987662 0.156603i \(-0.0500542\pi\)
\(522\) −0.0282185 0.160035i −0.00123509 0.00700454i
\(523\) 0.677519 + 3.84240i 0.0296258 + 0.168016i 0.996031 0.0890070i \(-0.0283694\pi\)
−0.966405 + 0.257023i \(0.917258\pi\)
\(524\) −3.41147 + 5.90885i −0.149031 + 0.258129i
\(525\) −0.326352 0.565258i −0.0142432 0.0246699i
\(526\) 15.2613 12.8057i 0.665424 0.558357i
\(527\) 6.46451 2.35289i 0.281598 0.102493i
\(528\) −2.70574 0.984808i −0.117752 0.0428583i
\(529\) −15.3610 12.8894i −0.667868 0.560408i
\(530\) 1.83615 10.4133i 0.0797573 0.452326i
\(531\) −4.55438 −0.197643
\(532\) −1.81268 2.19285i −0.0785897 0.0950722i
\(533\) 0.667252 0.0289019
\(534\) −0.433296 + 2.45734i −0.0187506 + 0.106340i
\(535\) −5.90554 4.95534i −0.255319 0.214238i
\(536\) −2.14543 0.780873i −0.0926684 0.0337286i
\(537\) 7.75877 2.82396i 0.334816 0.121863i
\(538\) 11.8216 9.91950i 0.509666 0.427660i
\(539\) 9.46451 + 16.3930i 0.407665 + 0.706097i
\(540\) −0.500000 + 0.866025i −0.0215166 + 0.0372678i
\(541\) 2.26635 + 12.8531i 0.0974380 + 0.552598i 0.993973 + 0.109625i \(0.0349651\pi\)
−0.896535 + 0.442973i \(0.853924\pi\)
\(542\) 3.91669 + 22.2126i 0.168236 + 0.954115i
\(543\) −1.06758 + 1.84911i −0.0458143 + 0.0793527i
\(544\) −3.64543 6.31407i −0.156297 0.270713i
\(545\) 6.28699 5.27541i 0.269305 0.225974i
\(546\) −1.01367 + 0.368946i −0.0433811 + 0.0157894i
\(547\) 34.1724 + 12.4377i 1.46110 + 0.531799i 0.945669 0.325130i \(-0.105408\pi\)
0.515435 + 0.856929i \(0.327630\pi\)
\(548\) 7.79086 + 6.53731i 0.332809 + 0.279260i
\(549\) 1.99747 11.3282i 0.0852501 0.483477i
\(550\) −2.87939 −0.122777
\(551\) −0.451304 0.545955i −0.0192262 0.0232585i
\(552\) −1.71688 −0.0730753
\(553\) −0.553033 + 3.13641i −0.0235174 + 0.133374i
\(554\) −14.3819 12.0679i −0.611029 0.512714i
\(555\) 6.81180 + 2.47929i 0.289145 + 0.105240i
\(556\) 5.68479 2.06910i 0.241089 0.0877492i
\(557\) −1.76083 + 1.47751i −0.0746088 + 0.0626042i −0.679329 0.733834i \(-0.737729\pi\)
0.604721 + 0.796438i \(0.293285\pi\)
\(558\) 0.471782 + 0.817150i 0.0199721 + 0.0345927i
\(559\) −9.38326 + 16.2523i −0.396869 + 0.687398i
\(560\) 0.113341 + 0.642788i 0.00478952 + 0.0271627i
\(561\) −3.64543 20.6743i −0.153910 0.872868i
\(562\) 8.47818 14.6846i 0.357630 0.619434i
\(563\) 12.4508 + 21.5655i 0.524740 + 0.908877i 0.999585 + 0.0288071i \(0.00917087\pi\)
−0.474845 + 0.880070i \(0.657496\pi\)
\(564\) 4.44356 3.72859i 0.187108 0.157002i
\(565\) −9.43882 + 3.43545i −0.397094 + 0.144530i
\(566\) 15.5471 + 5.65868i 0.653494 + 0.237852i
\(567\) 0.500000 + 0.419550i 0.0209980 + 0.0176194i
\(568\) 0.741230 4.20372i 0.0311013 0.176384i
\(569\) 6.07461 0.254661 0.127330 0.991860i \(-0.459359\pi\)
0.127330 + 0.991860i \(0.459359\pi\)
\(570\) −0.0320889 + 4.35878i −0.00134406 + 0.182569i
\(571\) 17.8557 0.747236 0.373618 0.927583i \(-0.378117\pi\)
0.373618 + 0.927583i \(0.378117\pi\)
\(572\) −0.826352 + 4.68647i −0.0345515 + 0.195951i
\(573\) −3.11334 2.61240i −0.130062 0.109135i
\(574\) −0.247626 0.0901285i −0.0103357 0.00376189i
\(575\) −1.61334 + 0.587208i −0.0672810 + 0.0244883i
\(576\) 0.766044 0.642788i 0.0319185 0.0267828i
\(577\) 2.57991 + 4.46853i 0.107403 + 0.186027i 0.914717 0.404094i \(-0.132413\pi\)
−0.807314 + 0.590121i \(0.799080\pi\)
\(578\) 18.0783 31.3126i 0.751959 1.30243i
\(579\) 0.0261591 + 0.148356i 0.00108714 + 0.00616545i
\(580\) 0.0282185 + 0.160035i 0.00117171 + 0.00664509i
\(581\) 1.40033 2.42544i 0.0580955 0.100624i
\(582\) −7.01754 12.1547i −0.290886 0.503830i
\(583\) −23.3234 + 19.5707i −0.965957 + 0.810534i
\(584\) 10.7096 3.89798i 0.443167 0.161299i
\(585\) 1.55303 + 0.565258i 0.0642100 + 0.0233705i
\(586\) −13.8589 11.6290i −0.572506 0.480390i
\(587\) 2.52915 14.3435i 0.104389 0.592021i −0.887073 0.461629i \(-0.847265\pi\)
0.991462 0.130392i \(-0.0416237\pi\)
\(588\) −6.57398 −0.271106
\(589\) 3.54664 + 2.08261i 0.146137 + 0.0858126i
\(590\) 4.55438 0.187501
\(591\) 0.741696 4.20637i 0.0305093 0.173027i
\(592\) −5.55303 4.65955i −0.228228 0.191506i
\(593\) −42.0771 15.3148i −1.72790 0.628904i −0.729423 0.684063i \(-0.760211\pi\)
−0.998478 + 0.0551583i \(0.982434\pi\)
\(594\) 2.70574 0.984808i 0.111018 0.0404072i
\(595\) −3.64543 + 3.05888i −0.149448 + 0.125402i
\(596\) −7.28699 12.6214i −0.298487 0.516994i
\(597\) −0.641559 + 1.11121i −0.0262573 + 0.0454789i
\(598\) 0.492726 + 2.79439i 0.0201491 + 0.114271i
\(599\) 0.801947 + 4.54807i 0.0327667 + 0.185829i 0.996798 0.0799590i \(-0.0254790\pi\)
−0.964031 + 0.265788i \(0.914368\pi\)
\(600\) 0.500000 0.866025i 0.0204124 0.0353553i
\(601\) 23.6374 + 40.9412i 0.964191 + 1.67003i 0.711772 + 0.702410i \(0.247893\pi\)
0.252419 + 0.967618i \(0.418774\pi\)
\(602\) 5.67752 4.76400i 0.231398 0.194166i
\(603\) 2.14543 0.780873i 0.0873687 0.0317996i
\(604\) −12.7280 4.63262i −0.517896 0.188499i
\(605\) −2.07532 1.74140i −0.0843738 0.0707981i
\(606\) 1.58987 9.01660i 0.0645841 0.366274i
\(607\) 26.4516 1.07364 0.536819 0.843698i \(-0.319626\pi\)
0.536819 + 0.843698i \(0.319626\pi\)
\(608\) 1.52094 4.08494i 0.0616824 0.165666i
\(609\) 0.106067 0.00429805
\(610\) −1.99747 + 11.3282i −0.0808753 + 0.458667i
\(611\) −7.34389 6.16226i −0.297102 0.249298i
\(612\) 6.85117 + 2.49362i 0.276942 + 0.100799i
\(613\) −9.56583 + 3.48168i −0.386360 + 0.140624i −0.527895 0.849310i \(-0.677019\pi\)
0.141535 + 0.989933i \(0.454796\pi\)
\(614\) −13.9704 + 11.7226i −0.563801 + 0.473085i
\(615\) 0.201867 + 0.349643i 0.00814005 + 0.0140990i
\(616\) 0.939693 1.62760i 0.0378613 0.0655777i
\(617\) −1.62613 9.22226i −0.0654657 0.371274i −0.999886 0.0151020i \(-0.995193\pi\)
0.934420 0.356172i \(-0.115918\pi\)
\(618\) 2.89306 + 16.4073i 0.116376 + 0.660000i
\(619\) −15.3803 + 26.6395i −0.618187 + 1.07073i 0.371629 + 0.928381i \(0.378799\pi\)
−0.989816 + 0.142350i \(0.954534\pi\)
\(620\) −0.471782 0.817150i −0.0189472 0.0328175i
\(621\) 1.31521 1.10359i 0.0527775 0.0442855i
\(622\) 21.1878 7.71172i 0.849553 0.309212i
\(623\) −1.53044 0.557035i −0.0613158 0.0223171i
\(624\) −1.26604 1.06234i −0.0506823 0.0425275i
\(625\) 0.173648 0.984808i 0.00694593 0.0393923i
\(626\) −24.6604 −0.985630
\(627\) 8.13816 9.55493i 0.325007 0.381587i
\(628\) −22.0077 −0.878204
\(629\) 9.17752 52.0483i 0.365932 2.07530i
\(630\) −0.500000 0.419550i −0.0199205 0.0167153i
\(631\) −22.1853 8.07477i −0.883181 0.321452i −0.139688 0.990196i \(-0.544610\pi\)
−0.743493 + 0.668744i \(0.766832\pi\)
\(632\) −4.58512 + 1.66885i −0.182386 + 0.0663832i
\(633\) 5.19459 4.35878i 0.206467 0.173246i
\(634\) 8.14930 + 14.1150i 0.323650 + 0.560578i
\(635\) −1.64543 + 2.84997i −0.0652969 + 0.113098i
\(636\) −1.83615 10.4133i −0.0728082 0.412916i
\(637\) 1.88666 + 10.6998i 0.0747522 + 0.423941i
\(638\) 0.233956 0.405223i 0.00926239 0.0160429i
\(639\) 2.13429 + 3.69669i 0.0844310 + 0.146239i
\(640\) −0.766044 + 0.642788i −0.0302806 + 0.0254084i
\(641\) −6.38490 + 2.32392i −0.252189 + 0.0917891i −0.465021 0.885300i \(-0.653953\pi\)
0.212833 + 0.977089i \(0.431731\pi\)
\(642\) −7.24422 2.63668i −0.285907 0.104062i
\(643\) −23.2108 19.4762i −0.915344 0.768065i 0.0577840 0.998329i \(-0.481597\pi\)
−0.973128 + 0.230264i \(0.926041\pi\)
\(644\) 0.194593 1.10359i 0.00766803 0.0434875i
\(645\) −11.3550 −0.447104
\(646\) 31.3371 5.28801i 1.23294 0.208054i
\(647\) 32.0597 1.26040 0.630199 0.776434i \(-0.282973\pi\)
0.630199 + 0.776434i \(0.282973\pi\)
\(648\) −0.173648 + 0.984808i −0.00682154 + 0.0386869i
\(649\) −10.0458 8.42939i −0.394331 0.330883i
\(650\) −1.55303 0.565258i −0.0609150 0.0221712i
\(651\) −0.578726 + 0.210639i −0.0226820 + 0.00825559i
\(652\) −1.10947 + 0.930956i −0.0434502 + 0.0364591i
\(653\) 17.4192 + 30.1710i 0.681667 + 1.18068i 0.974472 + 0.224509i \(0.0720778\pi\)
−0.292805 + 0.956172i \(0.594589\pi\)
\(654\) 4.10354 7.10754i 0.160461 0.277927i
\(655\) 1.18479 + 6.71929i 0.0462937 + 0.262544i
\(656\) −0.0701076 0.397600i −0.00273724 0.0155237i
\(657\) −5.69846 + 9.87003i −0.222318 + 0.385066i
\(658\) 1.89306 + 3.27887i 0.0737990 + 0.127824i
\(659\) 7.82501 6.56596i 0.304819 0.255774i −0.477528 0.878617i \(-0.658467\pi\)
0.782347 + 0.622843i \(0.214023\pi\)
\(660\) −2.70574 + 0.984808i −0.105321 + 0.0383336i
\(661\) 12.6429 + 4.60164i 0.491752 + 0.178983i 0.575981 0.817463i \(-0.304620\pi\)
−0.0842286 + 0.996446i \(0.526843\pi\)
\(662\) −4.93242 4.13879i −0.191704 0.160859i
\(663\) 2.09240 11.8666i 0.0812619 0.460859i
\(664\) 4.29086 0.166518
\(665\) −2.79813 0.514654i −0.108507 0.0199574i
\(666\) 7.24897 0.280892
\(667\) 0.0484478 0.274761i 0.00187591 0.0106388i
\(668\) −14.4855 12.1547i −0.560459 0.470281i
\(669\) 26.5390 + 9.65939i 1.02606 + 0.373454i
\(670\) −2.14543 + 0.780873i −0.0828852 + 0.0301677i
\(671\) 25.3726 21.2901i 0.979498 0.821896i
\(672\) 0.326352 + 0.565258i 0.0125893 + 0.0218053i
\(673\) −11.2242 + 19.4408i −0.432659 + 0.749388i −0.997101 0.0760847i \(-0.975758\pi\)
0.564442 + 0.825473i \(0.309091\pi\)
\(674\) 3.43283 + 19.4685i 0.132228 + 0.749900i
\(675\) 0.173648 + 0.984808i 0.00668372 + 0.0379053i
\(676\) 5.13429 8.89284i 0.197473 0.342032i
\(677\) −12.7233 22.0374i −0.488995 0.846965i 0.510925 0.859626i \(-0.329303\pi\)
−0.999920 + 0.0126609i \(0.995970\pi\)
\(678\) −7.69459 + 6.45653i −0.295509 + 0.247962i
\(679\) 8.60829 3.13316i 0.330356 0.120240i
\(680\) −6.85117 2.49362i −0.262730 0.0956260i
\(681\) −16.5194 13.8614i −0.633023 0.531169i
\(682\) −0.471782 + 2.67561i −0.0180654 + 0.102454i
\(683\) 11.0574 0.423099 0.211549 0.977367i \(-0.432149\pi\)
0.211549 + 0.977367i \(0.432149\pi\)
\(684\) 1.46064 + 4.10689i 0.0558489 + 0.157031i
\(685\) 10.1702 0.388585
\(686\) 1.53849 8.72518i 0.0587396 0.333129i
\(687\) −8.51889 7.14819i −0.325016 0.272721i
\(688\) 10.6702 + 3.88365i 0.406799 + 0.148063i
\(689\) −16.4217 + 5.97702i −0.625619 + 0.227707i
\(690\) −1.31521 + 1.10359i −0.0500691 + 0.0420130i
\(691\) 7.53895 + 13.0578i 0.286795 + 0.496744i 0.973043 0.230624i \(-0.0740767\pi\)
−0.686248 + 0.727368i \(0.740743\pi\)
\(692\) 0.577382 1.00005i 0.0219488 0.0380164i
\(693\) 0.326352 + 1.85083i 0.0123971 + 0.0703073i
\(694\) −5.07667 28.7912i −0.192708 1.09290i
\(695\) 3.02481 5.23913i 0.114738 0.198732i
\(696\) 0.0812519 + 0.140732i 0.00307985 + 0.00533445i
\(697\) 2.25490 1.89209i 0.0854104 0.0716679i
\(698\) −15.5287 + 5.65198i −0.587769 + 0.213931i
\(699\) −14.6604 5.33597i −0.554509 0.201825i
\(700\) 0.500000 + 0.419550i 0.0188982 + 0.0158575i
\(701\) 4.68433 26.5661i 0.176925 1.00339i −0.758974 0.651120i \(-0.774299\pi\)
0.935899 0.352269i \(-0.114590\pi\)
\(702\) 1.65270 0.0623773
\(703\) 27.4798 15.5969i 1.03642 0.588248i
\(704\) 2.87939 0.108521
\(705\) 1.00727 5.71253i 0.0379361 0.215146i
\(706\) −3.65270 3.06498i −0.137471 0.115352i
\(707\) 5.61556 + 2.04390i 0.211195 + 0.0768687i
\(708\) 4.27972 1.55769i 0.160842 0.0585415i
\(709\) −5.68479 + 4.77011i −0.213497 + 0.179145i −0.743264 0.668998i \(-0.766724\pi\)
0.529768 + 0.848143i \(0.322279\pi\)
\(710\) −2.13429 3.69669i −0.0800983 0.138734i
\(711\) 2.43969 4.22567i 0.0914956 0.158475i
\(712\) −0.433296 2.45734i −0.0162385 0.0920929i
\(713\) 0.281308 + 1.59537i 0.0105351 + 0.0597472i
\(714\) −2.37939 + 4.12122i −0.0890463 + 0.154233i
\(715\) 2.37939 + 4.12122i 0.0889840 + 0.154125i
\(716\) −6.32501 + 5.30731i −0.236377 + 0.198344i
\(717\) 18.8059 6.84478i 0.702318 0.255623i
\(718\) −31.4094 11.4321i −1.17219 0.426642i
\(719\) 8.05556 + 6.75942i 0.300422 + 0.252084i 0.780520 0.625131i \(-0.214954\pi\)
−0.480098 + 0.877215i \(0.659399\pi\)
\(720\) 0.173648 0.984808i 0.00647149 0.0367016i
\(721\) −10.8743 −0.404981
\(722\) 14.3735 + 12.4259i 0.534925 + 0.462445i
\(723\) −28.1361 −1.04639
\(724\) 0.370767 2.10272i 0.0137795 0.0781472i
\(725\) 0.124485 + 0.104455i 0.00462326 + 0.00387938i
\(726\) −2.54576 0.926581i −0.0944820 0.0343886i
\(727\) −22.1160 + 8.04958i −0.820238 + 0.298542i −0.717846 0.696202i \(-0.754872\pi\)
−0.102392 + 0.994744i \(0.532650\pi\)
\(728\) 0.826352 0.693392i 0.0306266 0.0256988i
\(729\) −0.500000 0.866025i −0.0185185 0.0320750i
\(730\) 5.69846 9.87003i 0.210910 0.365306i
\(731\) 14.3760 + 81.5302i 0.531715 + 3.01550i
\(732\) 1.99747 + 11.3282i 0.0738288 + 0.418704i
\(733\) −9.98932 + 17.3020i −0.368964 + 0.639064i −0.989404 0.145190i \(-0.953621\pi\)
0.620440 + 0.784254i \(0.286954\pi\)
\(734\) 2.76470 + 4.78860i 0.102047 + 0.176751i
\(735\) −5.03596 + 4.22567i −0.185754 + 0.155866i
\(736\) 1.61334 0.587208i 0.0594685 0.0216448i
\(737\) 6.17752 + 2.24843i 0.227552 + 0.0828221i
\(738\) 0.309278 + 0.259515i 0.0113847 + 0.00955287i
\(739\) −6.06835 + 34.4153i −0.223228 + 1.26599i 0.642816 + 0.766021i \(0.277766\pi\)
−0.866044 + 0.499968i \(0.833345\pi\)
\(740\) −7.24897 −0.266477
\(741\) 6.26517 3.55596i 0.230157 0.130631i
\(742\) 6.90167 0.253368
\(743\) 1.37867 7.81883i 0.0505785 0.286845i −0.949019 0.315219i \(-0.897922\pi\)
0.999597 + 0.0283744i \(0.00903305\pi\)
\(744\) −0.722811 0.606511i −0.0264995 0.0222358i
\(745\) −13.6951 4.98459i −0.501748 0.182621i
\(746\) 11.6985 4.25789i 0.428311 0.155893i
\(747\) −3.28699 + 2.75811i −0.120265 + 0.100914i
\(748\) 10.4966 + 18.1806i 0.383794 + 0.664750i
\(749\) 2.51589 4.35765i 0.0919287 0.159225i
\(750\) −0.173648 0.984808i −0.00634073 0.0359601i
\(751\) −2.10947 11.9634i −0.0769757 0.436551i −0.998801 0.0489462i \(-0.984414\pi\)
0.921826 0.387605i \(-0.126697\pi\)
\(752\) −2.90033 + 5.02352i −0.105764 + 0.183189i
\(753\) −12.8366 22.2337i −0.467792 0.810240i
\(754\) 0.205737 0.172634i 0.00749250 0.00628696i
\(755\) −12.7280 + 4.63262i −0.463220 + 0.168598i
\(756\) −0.613341 0.223238i −0.0223070 0.00811908i
\(757\) −41.6161 34.9200i −1.51256 1.26919i −0.858579 0.512682i \(-0.828652\pi\)
−0.653984 0.756509i \(-0.726904\pi\)
\(758\) −2.29385 + 13.0091i −0.0833165 + 0.472511i
\(759\) 4.94356 0.179440
\(760\) −1.46064 4.10689i −0.0529829 0.148973i
\(761\) 46.0283 1.66852 0.834262 0.551368i \(-0.185894\pi\)
0.834262 + 0.551368i \(0.185894\pi\)
\(762\) −0.571452 + 3.24086i −0.0207015 + 0.117404i
\(763\) 4.10354 + 3.44328i 0.148558 + 0.124655i
\(764\) 3.81908 + 1.39003i 0.138169 + 0.0502895i
\(765\) 6.85117 2.49362i 0.247704 0.0901570i
\(766\) 20.7310 17.3954i 0.749042 0.628521i
\(767\) −3.76352 6.51860i −0.135893 0.235373i
\(768\) −0.500000 + 0.866025i −0.0180422 + 0.0312500i
\(769\) −6.97384 39.5506i −0.251483 1.42623i −0.804941 0.593355i \(-0.797803\pi\)
0.553458 0.832877i \(-0.313308\pi\)
\(770\) −0.326352 1.85083i −0.0117609 0.0666994i
\(771\) −11.7194 + 20.2986i −0.422064 + 0.731037i
\(772\) −0.0753221 0.130462i −0.00271090 0.00469542i