Properties

Label 570.2.m.b.37.7
Level $570$
Weight $2$
Character 570.37
Analytic conductor $4.551$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.m (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Defining polynomial: \(x^{20} + 108 x^{16} + 1318 x^{12} + 4652 x^{8} + 5057 x^{4} + 256\)
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{9} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 37.7
Root \(-2.20512 + 2.20512i\) of defining polynomial
Character \(\chi\) \(=\) 570.37
Dual form 570.2.m.b.493.7

$q$-expansion

\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{2} +(-0.707107 - 0.707107i) q^{3} -1.00000i q^{4} +(0.114611 - 2.23313i) q^{5} -1.00000 q^{6} +(-1.40368 - 1.40368i) q^{7} +(-0.707107 - 0.707107i) q^{8} +1.00000i q^{9} +O(q^{10})\) \(q+(0.707107 - 0.707107i) q^{2} +(-0.707107 - 0.707107i) q^{3} -1.00000i q^{4} +(0.114611 - 2.23313i) q^{5} -1.00000 q^{6} +(-1.40368 - 1.40368i) q^{7} +(-0.707107 - 0.707107i) q^{8} +1.00000i q^{9} +(-1.49802 - 1.66010i) q^{10} -5.29298 q^{11} +(-0.707107 + 0.707107i) q^{12} +(1.91968 + 1.91968i) q^{13} -1.98511 q^{14} +(-1.66010 + 1.49802i) q^{15} -1.00000 q^{16} +(0.488117 + 0.488117i) q^{17} +(0.707107 + 0.707107i) q^{18} +(2.44789 - 3.60663i) q^{19} +(-2.23313 - 0.114611i) q^{20} +1.98511i q^{21} +(-3.74270 + 3.74270i) q^{22} +(-3.88930 + 3.88930i) q^{23} +1.00000i q^{24} +(-4.97373 - 0.511883i) q^{25} +2.71483 q^{26} +(0.707107 - 0.707107i) q^{27} +(-1.40368 + 1.40368i) q^{28} +6.19060 q^{29} +(-0.114611 + 2.23313i) q^{30} -7.84986i q^{31} +(-0.707107 + 0.707107i) q^{32} +(3.74270 + 3.74270i) q^{33} +0.690302 q^{34} +(-3.29548 + 2.97373i) q^{35} +1.00000 q^{36} +(-5.60602 + 5.60602i) q^{37} +(-0.819353 - 4.28120i) q^{38} -2.71483i q^{39} +(-1.66010 + 1.49802i) q^{40} +1.90599i q^{41} +(1.40368 + 1.40368i) q^{42} +(7.12884 - 7.12884i) q^{43} +5.29298i q^{44} +(2.23313 + 0.114611i) q^{45} +5.50029i q^{46} +(-7.86994 - 7.86994i) q^{47} +(0.707107 + 0.707107i) q^{48} -3.05934i q^{49} +(-3.87891 + 3.15500i) q^{50} -0.690302i q^{51} +(1.91968 - 1.91968i) q^{52} +(-8.93991 - 8.93991i) q^{53} -1.00000i q^{54} +(-0.606635 + 11.8199i) q^{55} +1.98511i q^{56} +(-4.28120 + 0.819353i) q^{57} +(4.37741 - 4.37741i) q^{58} +0.611185 q^{59} +(1.49802 + 1.66010i) q^{60} +8.31021 q^{61} +(-5.55069 - 5.55069i) q^{62} +(1.40368 - 1.40368i) q^{63} +1.00000i q^{64} +(4.50690 - 4.06687i) q^{65} +5.29298 q^{66} +(-10.2011 + 10.2011i) q^{67} +(0.488117 - 0.488117i) q^{68} +5.50029 q^{69} +(-0.227516 + 4.43300i) q^{70} -3.97022i q^{71} +(0.707107 - 0.707107i) q^{72} +(7.72265 - 7.72265i) q^{73} +7.92810i q^{74} +(3.15500 + 3.87891i) q^{75} +(-3.60663 - 2.44789i) q^{76} +(7.42967 + 7.42967i) q^{77} +(-1.91968 - 1.91968i) q^{78} +17.1528 q^{79} +(-0.114611 + 2.23313i) q^{80} -1.00000 q^{81} +(1.34774 + 1.34774i) q^{82} +(5.43217 - 5.43217i) q^{83} +1.98511 q^{84} +(1.14597 - 1.03408i) q^{85} -10.0817i q^{86} +(-4.37741 - 4.37741i) q^{87} +(3.74270 + 3.74270i) q^{88} -5.42118 q^{89} +(1.66010 - 1.49802i) q^{90} -5.38924i q^{91} +(3.88930 + 3.88930i) q^{92} +(-5.55069 + 5.55069i) q^{93} -11.1298 q^{94} +(-7.77352 - 5.87982i) q^{95} +1.00000 q^{96} +(3.10415 - 3.10415i) q^{97} +(-2.16328 - 2.16328i) q^{98} -5.29298i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q + 12q^{5} - 20q^{6} - 4q^{7} + O(q^{10}) \) \( 20q + 12q^{5} - 20q^{6} - 4q^{7} - 8q^{11} - 20q^{16} - 12q^{17} - 4q^{23} - 28q^{25} + 24q^{26} - 4q^{28} - 12q^{30} + 4q^{35} + 20q^{36} - 12q^{38} + 4q^{42} - 12q^{43} - 44q^{47} + 64q^{55} + 12q^{57} - 8q^{58} - 24q^{62} + 4q^{63} + 8q^{66} - 12q^{68} - 4q^{73} + 4q^{76} + 88q^{77} - 12q^{80} - 20q^{81} - 8q^{82} + 76q^{83} - 12q^{85} + 8q^{87} + 4q^{92} - 24q^{93} - 24q^{95} + 20q^{96} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 0.707107i 0.500000 0.500000i
\(3\) −0.707107 0.707107i −0.408248 0.408248i
\(4\) 1.00000i 0.500000i
\(5\) 0.114611 2.23313i 0.0512557 0.998686i
\(6\) −1.00000 −0.408248
\(7\) −1.40368 1.40368i −0.530543 0.530543i 0.390191 0.920734i \(-0.372409\pi\)
−0.920734 + 0.390191i \(0.872409\pi\)
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) 1.00000i 0.333333i
\(10\) −1.49802 1.66010i −0.473715 0.524971i
\(11\) −5.29298 −1.59589 −0.797947 0.602728i \(-0.794080\pi\)
−0.797947 + 0.602728i \(0.794080\pi\)
\(12\) −0.707107 + 0.707107i −0.204124 + 0.204124i
\(13\) 1.91968 + 1.91968i 0.532423 + 0.532423i 0.921293 0.388870i \(-0.127134\pi\)
−0.388870 + 0.921293i \(0.627134\pi\)
\(14\) −1.98511 −0.530543
\(15\) −1.66010 + 1.49802i −0.428637 + 0.386787i
\(16\) −1.00000 −0.250000
\(17\) 0.488117 + 0.488117i 0.118386 + 0.118386i 0.763818 0.645432i \(-0.223323\pi\)
−0.645432 + 0.763818i \(0.723323\pi\)
\(18\) 0.707107 + 0.707107i 0.166667 + 0.166667i
\(19\) 2.44789 3.60663i 0.561585 0.827419i
\(20\) −2.23313 0.114611i −0.499343 0.0256278i
\(21\) 1.98511i 0.433186i
\(22\) −3.74270 + 3.74270i −0.797947 + 0.797947i
\(23\) −3.88930 + 3.88930i −0.810974 + 0.810974i −0.984780 0.173806i \(-0.944393\pi\)
0.173806 + 0.984780i \(0.444393\pi\)
\(24\) 1.00000i 0.204124i
\(25\) −4.97373 0.511883i −0.994746 0.102377i
\(26\) 2.71483 0.532423
\(27\) 0.707107 0.707107i 0.136083 0.136083i
\(28\) −1.40368 + 1.40368i −0.265271 + 0.265271i
\(29\) 6.19060 1.14956 0.574782 0.818306i \(-0.305087\pi\)
0.574782 + 0.818306i \(0.305087\pi\)
\(30\) −0.114611 + 2.23313i −0.0209250 + 0.407712i
\(31\) 7.84986i 1.40988i −0.709268 0.704938i \(-0.750975\pi\)
0.709268 0.704938i \(-0.249025\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) 3.74270 + 3.74270i 0.651521 + 0.651521i
\(34\) 0.690302 0.118386
\(35\) −3.29548 + 2.97373i −0.557039 + 0.502652i
\(36\) 1.00000 0.166667
\(37\) −5.60602 + 5.60602i −0.921623 + 0.921623i −0.997144 0.0755209i \(-0.975938\pi\)
0.0755209 + 0.997144i \(0.475938\pi\)
\(38\) −0.819353 4.28120i −0.132917 0.694502i
\(39\) 2.71483i 0.434721i
\(40\) −1.66010 + 1.49802i −0.262485 + 0.236857i
\(41\) 1.90599i 0.297666i 0.988862 + 0.148833i \(0.0475517\pi\)
−0.988862 + 0.148833i \(0.952448\pi\)
\(42\) 1.40368 + 1.40368i 0.216593 + 0.216593i
\(43\) 7.12884 7.12884i 1.08714 1.08714i 0.0913152 0.995822i \(-0.470893\pi\)
0.995822 0.0913152i \(-0.0291071\pi\)
\(44\) 5.29298i 0.797947i
\(45\) 2.23313 + 0.114611i 0.332895 + 0.0170852i
\(46\) 5.50029i 0.810974i
\(47\) −7.86994 7.86994i −1.14795 1.14795i −0.986955 0.160993i \(-0.948530\pi\)
−0.160993 0.986955i \(-0.551470\pi\)
\(48\) 0.707107 + 0.707107i 0.102062 + 0.102062i
\(49\) 3.05934i 0.437049i
\(50\) −3.87891 + 3.15500i −0.548561 + 0.446185i
\(51\) 0.690302i 0.0966616i
\(52\) 1.91968 1.91968i 0.266211 0.266211i
\(53\) −8.93991 8.93991i −1.22799 1.22799i −0.964723 0.263268i \(-0.915200\pi\)
−0.263268 0.964723i \(-0.584800\pi\)
\(54\) 1.00000i 0.136083i
\(55\) −0.606635 + 11.8199i −0.0817986 + 1.59380i
\(56\) 1.98511i 0.265271i
\(57\) −4.28120 + 0.819353i −0.567059 + 0.108526i
\(58\) 4.37741 4.37741i 0.574782 0.574782i
\(59\) 0.611185 0.0795696 0.0397848 0.999208i \(-0.487333\pi\)
0.0397848 + 0.999208i \(0.487333\pi\)
\(60\) 1.49802 + 1.66010i 0.193393 + 0.214318i
\(61\) 8.31021 1.06401 0.532007 0.846740i \(-0.321438\pi\)
0.532007 + 0.846740i \(0.321438\pi\)
\(62\) −5.55069 5.55069i −0.704938 0.704938i
\(63\) 1.40368 1.40368i 0.176848 0.176848i
\(64\) 1.00000i 0.125000i
\(65\) 4.50690 4.06687i 0.559013 0.504433i
\(66\) 5.29298 0.651521
\(67\) −10.2011 + 10.2011i −1.24626 + 1.24626i −0.288905 + 0.957358i \(0.593291\pi\)
−0.957358 + 0.288905i \(0.906709\pi\)
\(68\) 0.488117 0.488117i 0.0591929 0.0591929i
\(69\) 5.50029 0.662158
\(70\) −0.227516 + 4.43300i −0.0271933 + 0.529845i
\(71\) 3.97022i 0.471178i −0.971853 0.235589i \(-0.924298\pi\)
0.971853 0.235589i \(-0.0757019\pi\)
\(72\) 0.707107 0.707107i 0.0833333 0.0833333i
\(73\) 7.72265 7.72265i 0.903867 0.903867i −0.0919007 0.995768i \(-0.529294\pi\)
0.995768 + 0.0919007i \(0.0292942\pi\)
\(74\) 7.92810i 0.921623i
\(75\) 3.15500 + 3.87891i 0.364308 + 0.447898i
\(76\) −3.60663 2.44789i −0.413709 0.280793i
\(77\) 7.42967 + 7.42967i 0.846689 + 0.846689i
\(78\) −1.91968 1.91968i −0.217361 0.217361i
\(79\) 17.1528 1.92984 0.964918 0.262550i \(-0.0845635\pi\)
0.964918 + 0.262550i \(0.0845635\pi\)
\(80\) −0.114611 + 2.23313i −0.0128139 + 0.249671i
\(81\) −1.00000 −0.111111
\(82\) 1.34774 + 1.34774i 0.148833 + 0.148833i
\(83\) 5.43217 5.43217i 0.596258 0.596258i −0.343056 0.939315i \(-0.611462\pi\)
0.939315 + 0.343056i \(0.111462\pi\)
\(84\) 1.98511 0.216593
\(85\) 1.14597 1.03408i 0.124298 0.112162i
\(86\) 10.0817i 1.08714i
\(87\) −4.37741 4.37741i −0.469308 0.469308i
\(88\) 3.74270 + 3.74270i 0.398973 + 0.398973i
\(89\) −5.42118 −0.574644 −0.287322 0.957834i \(-0.592765\pi\)
−0.287322 + 0.957834i \(0.592765\pi\)
\(90\) 1.66010 1.49802i 0.174990 0.157905i
\(91\) 5.38924i 0.564946i
\(92\) 3.88930 + 3.88930i 0.405487 + 0.405487i
\(93\) −5.55069 + 5.55069i −0.575580 + 0.575580i
\(94\) −11.1298 −1.14795
\(95\) −7.77352 5.87982i −0.797547 0.603257i
\(96\) 1.00000 0.102062
\(97\) 3.10415 3.10415i 0.315178 0.315178i −0.531734 0.846912i \(-0.678459\pi\)
0.846912 + 0.531734i \(0.178459\pi\)
\(98\) −2.16328 2.16328i −0.218525 0.218525i
\(99\) 5.29298i 0.531964i
\(100\) −0.511883 + 4.97373i −0.0511883 + 0.497373i
\(101\) −2.79454 −0.278067 −0.139034 0.990288i \(-0.544400\pi\)
−0.139034 + 0.990288i \(0.544400\pi\)
\(102\) −0.488117 0.488117i −0.0483308 0.0483308i
\(103\) 4.05319 + 4.05319i 0.399372 + 0.399372i 0.878012 0.478639i \(-0.158870\pi\)
−0.478639 + 0.878012i \(0.658870\pi\)
\(104\) 2.71483i 0.266211i
\(105\) 4.43300 + 0.227516i 0.432617 + 0.0222033i
\(106\) −12.6429 −1.22799
\(107\) 7.04015 7.04015i 0.680597 0.680597i −0.279537 0.960135i \(-0.590181\pi\)
0.960135 + 0.279537i \(0.0901811\pi\)
\(108\) −0.707107 0.707107i −0.0680414 0.0680414i
\(109\) 8.64011 0.827573 0.413786 0.910374i \(-0.364206\pi\)
0.413786 + 0.910374i \(0.364206\pi\)
\(110\) 7.92898 + 8.78689i 0.755998 + 0.837797i
\(111\) 7.92810 0.752502
\(112\) 1.40368 + 1.40368i 0.132636 + 0.132636i
\(113\) 6.47280 + 6.47280i 0.608910 + 0.608910i 0.942661 0.333751i \(-0.108315\pi\)
−0.333751 + 0.942661i \(0.608315\pi\)
\(114\) −2.44789 + 3.60663i −0.229266 + 0.337792i
\(115\) 8.23954 + 9.13105i 0.768341 + 0.851475i
\(116\) 6.19060i 0.574782i
\(117\) −1.91968 + 1.91968i −0.177474 + 0.177474i
\(118\) 0.432173 0.432173i 0.0397848 0.0397848i
\(119\) 1.37032i 0.125617i
\(120\) 2.23313 + 0.114611i 0.203856 + 0.0104625i
\(121\) 17.0156 1.54688
\(122\) 5.87621 5.87621i 0.532007 0.532007i
\(123\) 1.34774 1.34774i 0.121522 0.121522i
\(124\) −7.84986 −0.704938
\(125\) −1.71315 + 11.0483i −0.153228 + 0.988191i
\(126\) 1.98511i 0.176848i
\(127\) 1.33748 1.33748i 0.118683 0.118683i −0.645271 0.763954i \(-0.723256\pi\)
0.763954 + 0.645271i \(0.223256\pi\)
\(128\) 0.707107 + 0.707107i 0.0625000 + 0.0625000i
\(129\) −10.0817 −0.887644
\(130\) 0.311150 6.06257i 0.0272897 0.531723i
\(131\) 5.33670 0.466269 0.233135 0.972444i \(-0.425102\pi\)
0.233135 + 0.972444i \(0.425102\pi\)
\(132\) 3.74270 3.74270i 0.325760 0.325760i
\(133\) −8.49864 + 1.62650i −0.736926 + 0.141036i
\(134\) 14.4265i 1.24626i
\(135\) −1.49802 1.66010i −0.128929 0.142879i
\(136\) 0.690302i 0.0591929i
\(137\) −2.97373 2.97373i −0.254063 0.254063i 0.568571 0.822634i \(-0.307496\pi\)
−0.822634 + 0.568571i \(0.807496\pi\)
\(138\) 3.88930 3.88930i 0.331079 0.331079i
\(139\) 13.8993i 1.17892i 0.807796 + 0.589462i \(0.200660\pi\)
−0.807796 + 0.589462i \(0.799340\pi\)
\(140\) 2.97373 + 3.29548i 0.251326 + 0.278519i
\(141\) 11.1298i 0.937296i
\(142\) −2.80737 2.80737i −0.235589 0.235589i
\(143\) −10.1608 10.1608i −0.849690 0.849690i
\(144\) 1.00000i 0.0833333i
\(145\) 0.709511 13.8244i 0.0589217 1.14805i
\(146\) 10.9215i 0.903867i
\(147\) −2.16328 + 2.16328i −0.178425 + 0.178425i
\(148\) 5.60602 + 5.60602i 0.460812 + 0.460812i
\(149\) 12.9453i 1.06052i −0.847834 0.530262i \(-0.822094\pi\)
0.847834 0.530262i \(-0.177906\pi\)
\(150\) 4.97373 + 0.511883i 0.406103 + 0.0417951i
\(151\) 21.7518i 1.77013i −0.465465 0.885066i \(-0.654113\pi\)
0.465465 0.885066i \(-0.345887\pi\)
\(152\) −4.28120 + 0.819353i −0.347251 + 0.0664583i
\(153\) −0.488117 + 0.488117i −0.0394619 + 0.0394619i
\(154\) 10.5071 0.846689
\(155\) −17.5298 0.899682i −1.40802 0.0722642i
\(156\) −2.71483 −0.217361
\(157\) 2.34642 + 2.34642i 0.187264 + 0.187264i 0.794512 0.607248i \(-0.207727\pi\)
−0.607248 + 0.794512i \(0.707727\pi\)
\(158\) 12.1288 12.1288i 0.964918 0.964918i
\(159\) 12.6429i 1.00265i
\(160\) 1.49802 + 1.66010i 0.118429 + 0.131243i
\(161\) 10.9187 0.860513
\(162\) −0.707107 + 0.707107i −0.0555556 + 0.0555556i
\(163\) −14.1411 + 14.1411i −1.10761 + 1.10761i −0.114150 + 0.993464i \(0.536414\pi\)
−0.993464 + 0.114150i \(0.963586\pi\)
\(164\) 1.90599 0.148833
\(165\) 8.78689 7.92898i 0.684058 0.617270i
\(166\) 7.68225i 0.596258i
\(167\) −9.19018 + 9.19018i −0.711157 + 0.711157i −0.966777 0.255620i \(-0.917720\pi\)
0.255620 + 0.966777i \(0.417720\pi\)
\(168\) 1.40368 1.40368i 0.108297 0.108297i
\(169\) 5.62968i 0.433052i
\(170\) 0.0791163 1.54153i 0.00606794 0.118230i
\(171\) 3.60663 + 2.44789i 0.275806 + 0.187195i
\(172\) −7.12884 7.12884i −0.543569 0.543569i
\(173\) −2.10806 2.10806i −0.160273 0.160273i 0.622415 0.782688i \(-0.286152\pi\)
−0.782688 + 0.622415i \(0.786152\pi\)
\(174\) −6.19060 −0.469308
\(175\) 6.26302 + 7.70006i 0.473440 + 0.582070i
\(176\) 5.29298 0.398973
\(177\) −0.432173 0.432173i −0.0324841 0.0324841i
\(178\) −3.83335 + 3.83335i −0.287322 + 0.287322i
\(179\) 7.93836 0.593341 0.296670 0.954980i \(-0.404124\pi\)
0.296670 + 0.954980i \(0.404124\pi\)
\(180\) 0.114611 2.23313i 0.00854261 0.166448i
\(181\) 4.77157i 0.354668i 0.984151 + 0.177334i \(0.0567473\pi\)
−0.984151 + 0.177334i \(0.943253\pi\)
\(182\) −3.81077 3.81077i −0.282473 0.282473i
\(183\) −5.87621 5.87621i −0.434382 0.434382i
\(184\) 5.50029 0.405487
\(185\) 11.8764 + 13.1615i 0.873173 + 0.967650i
\(186\) 7.84986i 0.575580i
\(187\) −2.58359 2.58359i −0.188931 0.188931i
\(188\) −7.86994 + 7.86994i −0.573974 + 0.573974i
\(189\) −1.98511 −0.144395
\(190\) −9.65437 + 1.33905i −0.700402 + 0.0971447i
\(191\) −13.8711 −1.00368 −0.501840 0.864961i \(-0.667343\pi\)
−0.501840 + 0.864961i \(0.667343\pi\)
\(192\) 0.707107 0.707107i 0.0510310 0.0510310i
\(193\) 8.22061 + 8.22061i 0.591733 + 0.591733i 0.938099 0.346367i \(-0.112585\pi\)
−0.346367 + 0.938099i \(0.612585\pi\)
\(194\) 4.38992i 0.315178i
\(195\) −6.06257 0.311150i −0.434150 0.0222819i
\(196\) −3.05934 −0.218525
\(197\) −0.844893 0.844893i −0.0601961 0.0601961i 0.676368 0.736564i \(-0.263553\pi\)
−0.736564 + 0.676368i \(0.763553\pi\)
\(198\) −3.74270 3.74270i −0.265982 0.265982i
\(199\) 17.2265i 1.22116i −0.791956 0.610578i \(-0.790937\pi\)
0.791956 0.610578i \(-0.209063\pi\)
\(200\) 3.15500 + 3.87891i 0.223092 + 0.274281i
\(201\) 14.4265 1.01757
\(202\) −1.97604 + 1.97604i −0.139034 + 0.139034i
\(203\) −8.68964 8.68964i −0.609893 0.609893i
\(204\) −0.690302 −0.0483308
\(205\) 4.25633 + 0.218448i 0.297275 + 0.0152571i
\(206\) 5.73207 0.399372
\(207\) −3.88930 3.88930i −0.270325 0.270325i
\(208\) −1.91968 1.91968i −0.133106 0.133106i
\(209\) −12.9567 + 19.0898i −0.896230 + 1.32047i
\(210\) 3.29548 2.97373i 0.227410 0.205207i
\(211\) 7.30842i 0.503132i 0.967840 + 0.251566i \(0.0809456\pi\)
−0.967840 + 0.251566i \(0.919054\pi\)
\(212\) −8.93991 + 8.93991i −0.613995 + 0.613995i
\(213\) −2.80737 + 2.80737i −0.192358 + 0.192358i
\(214\) 9.95628i 0.680597i
\(215\) −15.1026 16.7367i −1.02999 1.14143i
\(216\) −1.00000 −0.0680414
\(217\) −11.0187 + 11.0187i −0.748000 + 0.748000i
\(218\) 6.10948 6.10948i 0.413786 0.413786i
\(219\) −10.9215 −0.738005
\(220\) 11.8199 + 0.606635i 0.796898 + 0.0408993i
\(221\) 1.87405i 0.126063i
\(222\) 5.60602 5.60602i 0.376251 0.376251i
\(223\) −4.27908 4.27908i −0.286548 0.286548i 0.549165 0.835714i \(-0.314946\pi\)
−0.835714 + 0.549165i \(0.814946\pi\)
\(224\) 1.98511 0.132636
\(225\) 0.511883 4.97373i 0.0341255 0.331582i
\(226\) 9.15392 0.608910
\(227\) −13.7190 + 13.7190i −0.910561 + 0.910561i −0.996316 0.0857552i \(-0.972670\pi\)
0.0857552 + 0.996316i \(0.472670\pi\)
\(228\) 0.819353 + 4.28120i 0.0542630 + 0.283529i
\(229\) 25.2634i 1.66945i 0.550667 + 0.834725i \(0.314373\pi\)
−0.550667 + 0.834725i \(0.685627\pi\)
\(230\) 12.2829 + 0.630395i 0.809908 + 0.0415670i
\(231\) 10.5071i 0.691319i
\(232\) −4.37741 4.37741i −0.287391 0.287391i
\(233\) 7.73738 7.73738i 0.506892 0.506892i −0.406679 0.913571i \(-0.633313\pi\)
0.913571 + 0.406679i \(0.133313\pi\)
\(234\) 2.71483i 0.177474i
\(235\) −18.4766 + 16.6726i −1.20528 + 1.08760i
\(236\) 0.611185i 0.0397848i
\(237\) −12.1288 12.1288i −0.787853 0.787853i
\(238\) −0.968965 0.968965i −0.0628087 0.0628087i
\(239\) 11.0820i 0.716837i 0.933561 + 0.358418i \(0.116684\pi\)
−0.933561 + 0.358418i \(0.883316\pi\)
\(240\) 1.66010 1.49802i 0.107159 0.0966967i
\(241\) 14.5158i 0.935043i 0.883982 + 0.467522i \(0.154853\pi\)
−0.883982 + 0.467522i \(0.845147\pi\)
\(242\) 12.0319 12.0319i 0.773438 0.773438i
\(243\) 0.707107 + 0.707107i 0.0453609 + 0.0453609i
\(244\) 8.31021i 0.532007i
\(245\) −6.83191 0.350635i −0.436475 0.0224013i
\(246\) 1.90599i 0.121522i
\(247\) 11.6227 2.22441i 0.739537 0.141536i
\(248\) −5.55069 + 5.55069i −0.352469 + 0.352469i
\(249\) −7.68225 −0.486843
\(250\) 6.60096 + 9.02371i 0.417481 + 0.570710i
\(251\) 6.78199 0.428075 0.214038 0.976825i \(-0.431338\pi\)
0.214038 + 0.976825i \(0.431338\pi\)
\(252\) −1.40368 1.40368i −0.0884238 0.0884238i
\(253\) 20.5860 20.5860i 1.29423 1.29423i
\(254\) 1.89149i 0.118683i
\(255\) −1.54153 0.0791163i −0.0965345 0.00495445i
\(256\) 1.00000 0.0625000
\(257\) 13.1118 13.1118i 0.817891 0.817891i −0.167911 0.985802i \(-0.553702\pi\)
0.985802 + 0.167911i \(0.0537023\pi\)
\(258\) −7.12884 + 7.12884i −0.443822 + 0.443822i
\(259\) 15.7381 0.977921
\(260\) −4.06687 4.50690i −0.252217 0.279506i
\(261\) 6.19060i 0.383188i
\(262\) 3.77362 3.77362i 0.233135 0.233135i
\(263\) 8.10698 8.10698i 0.499898 0.499898i −0.411508 0.911406i \(-0.634998\pi\)
0.911406 + 0.411508i \(0.134998\pi\)
\(264\) 5.29298i 0.325760i
\(265\) −20.9886 + 18.9393i −1.28932 + 1.16343i
\(266\) −4.85934 + 7.15956i −0.297945 + 0.438981i
\(267\) 3.83335 + 3.83335i 0.234597 + 0.234597i
\(268\) 10.2011 + 10.2011i 0.623132 + 0.623132i
\(269\) 16.5207 1.00729 0.503644 0.863911i \(-0.331992\pi\)
0.503644 + 0.863911i \(0.331992\pi\)
\(270\) −2.23313 0.114611i −0.135904 0.00697501i
\(271\) −1.20001 −0.0728953 −0.0364477 0.999336i \(-0.511604\pi\)
−0.0364477 + 0.999336i \(0.511604\pi\)
\(272\) −0.488117 0.488117i −0.0295964 0.0295964i
\(273\) −3.81077 + 3.81077i −0.230638 + 0.230638i
\(274\) −4.20549 −0.254063
\(275\) 26.3258 + 2.70939i 1.58751 + 0.163382i
\(276\) 5.50029i 0.331079i
\(277\) −5.15378 5.15378i −0.309661 0.309661i 0.535117 0.844778i \(-0.320268\pi\)
−0.844778 + 0.535117i \(0.820268\pi\)
\(278\) 9.82829 + 9.82829i 0.589462 + 0.589462i
\(279\) 7.84986 0.469959
\(280\) 4.43300 + 0.227516i 0.264923 + 0.0135967i
\(281\) 21.1406i 1.26114i 0.776132 + 0.630570i \(0.217179\pi\)
−0.776132 + 0.630570i \(0.782821\pi\)
\(282\) 7.86994 + 7.86994i 0.468648 + 0.468648i
\(283\) −15.7352 + 15.7352i −0.935358 + 0.935358i −0.998034 0.0626758i \(-0.980037\pi\)
0.0626758 + 0.998034i \(0.480037\pi\)
\(284\) −3.97022 −0.235589
\(285\) 1.33905 + 9.65437i 0.0793183 + 0.571876i
\(286\) −14.3696 −0.849690
\(287\) 2.67541 2.67541i 0.157924 0.157924i
\(288\) −0.707107 0.707107i −0.0416667 0.0416667i
\(289\) 16.5235i 0.971970i
\(290\) −9.27362 10.2770i −0.544566 0.603488i
\(291\) −4.38992 −0.257342
\(292\) −7.72265 7.72265i −0.451934 0.451934i
\(293\) 11.6988 + 11.6988i 0.683451 + 0.683451i 0.960776 0.277325i \(-0.0894478\pi\)
−0.277325 + 0.960776i \(0.589448\pi\)
\(294\) 3.05934i 0.178425i
\(295\) 0.0700487 1.36486i 0.00407839 0.0794650i
\(296\) 7.92810 0.460812
\(297\) −3.74270 + 3.74270i −0.217174 + 0.217174i
\(298\) −9.15374 9.15374i −0.530262 0.530262i
\(299\) −14.9324 −0.863562
\(300\) 3.87891 3.15500i 0.223949 0.182154i
\(301\) −20.0133 −1.15355
\(302\) −15.3808 15.3808i −0.885066 0.885066i
\(303\) 1.97604 + 1.97604i 0.113521 + 0.113521i
\(304\) −2.44789 + 3.60663i −0.140396 + 0.206855i
\(305\) 0.952444 18.5578i 0.0545368 1.06262i
\(306\) 0.690302i 0.0394619i
\(307\) −13.8361 + 13.8361i −0.789668 + 0.789668i −0.981440 0.191772i \(-0.938577\pi\)
0.191772 + 0.981440i \(0.438577\pi\)
\(308\) 7.42967 7.42967i 0.423345 0.423345i
\(309\) 5.73207i 0.326086i
\(310\) −13.0316 + 11.7592i −0.740144 + 0.667880i
\(311\) −0.990577 −0.0561705 −0.0280852 0.999606i \(-0.508941\pi\)
−0.0280852 + 0.999606i \(0.508941\pi\)
\(312\) −1.91968 + 1.91968i −0.108680 + 0.108680i
\(313\) 5.68394 5.68394i 0.321275 0.321275i −0.527981 0.849256i \(-0.677051\pi\)
0.849256 + 0.527981i \(0.177051\pi\)
\(314\) 3.31834 0.187264
\(315\) −2.97373 3.29548i −0.167551 0.185680i
\(316\) 17.1528i 0.964918i
\(317\) −9.63331 + 9.63331i −0.541061 + 0.541061i −0.923840 0.382779i \(-0.874967\pi\)
0.382779 + 0.923840i \(0.374967\pi\)
\(318\) 8.93991 + 8.93991i 0.501325 + 0.501325i
\(319\) −32.7667 −1.83458
\(320\) 2.23313 + 0.114611i 0.124836 + 0.00640696i
\(321\) −9.95628 −0.555705
\(322\) 7.72067 7.72067i 0.430256 0.430256i
\(323\) 2.95532 0.565601i 0.164438 0.0314709i
\(324\) 1.00000i 0.0555556i
\(325\) −8.56530 10.5306i −0.475118 0.584133i
\(326\) 19.9985i 1.10761i
\(327\) −6.10948 6.10948i −0.337855 0.337855i
\(328\) 1.34774 1.34774i 0.0744165 0.0744165i
\(329\) 22.0938i 1.21807i
\(330\) 0.606635 11.8199i 0.0333941 0.650664i
\(331\) 19.9864i 1.09855i −0.835641 0.549276i \(-0.814904\pi\)
0.835641 0.549276i \(-0.185096\pi\)
\(332\) −5.43217 5.43217i −0.298129 0.298129i
\(333\) −5.60602 5.60602i −0.307208 0.307208i
\(334\) 12.9969i 0.711157i
\(335\) 21.6112 + 23.9495i 1.18075 + 1.30850i
\(336\) 1.98511i 0.108297i
\(337\) 4.18460 4.18460i 0.227950 0.227950i −0.583886 0.811836i \(-0.698468\pi\)
0.811836 + 0.583886i \(0.198468\pi\)
\(338\) −3.98078 3.98078i −0.216526 0.216526i
\(339\) 9.15392i 0.497173i
\(340\) −1.03408 1.14597i −0.0560811 0.0621490i
\(341\) 41.5492i 2.25001i
\(342\) 4.28120 0.819353i 0.231501 0.0443055i
\(343\) −14.1201 + 14.1201i −0.762416 + 0.762416i
\(344\) −10.0817 −0.543569
\(345\) 0.630395 12.2829i 0.0339393 0.661287i
\(346\) −2.98124 −0.160273
\(347\) 2.65197 + 2.65197i 0.142365 + 0.142365i 0.774697 0.632332i \(-0.217902\pi\)
−0.632332 + 0.774697i \(0.717902\pi\)
\(348\) −4.37741 + 4.37741i −0.234654 + 0.234654i
\(349\) 17.8125i 0.953481i −0.879044 0.476740i \(-0.841818\pi\)
0.879044 0.476740i \(-0.158182\pi\)
\(350\) 9.87339 + 1.01614i 0.527755 + 0.0543151i
\(351\) 2.71483 0.144907
\(352\) 3.74270 3.74270i 0.199487 0.199487i
\(353\) −11.6167 + 11.6167i −0.618293 + 0.618293i −0.945093 0.326801i \(-0.894029\pi\)
0.326801 + 0.945093i \(0.394029\pi\)
\(354\) −0.611185 −0.0324841
\(355\) −8.86601 0.455031i −0.470559 0.0241506i
\(356\) 5.42118i 0.287322i
\(357\) −0.968965 + 0.968965i −0.0512831 + 0.0512831i
\(358\) 5.61326 5.61326i 0.296670 0.296670i
\(359\) 4.76092i 0.251272i −0.992076 0.125636i \(-0.959903\pi\)
0.992076 0.125636i \(-0.0400971\pi\)
\(360\) −1.49802 1.66010i −0.0789525 0.0874951i
\(361\) −7.01563 17.6573i −0.369243 0.929333i
\(362\) 3.37401 + 3.37401i 0.177334 + 0.177334i
\(363\) −12.0319 12.0319i −0.631509 0.631509i
\(364\) −5.38924 −0.282473
\(365\) −16.3606 18.1308i −0.856351 0.949008i
\(366\) −8.31021 −0.434382
\(367\) 12.6008 + 12.6008i 0.657754 + 0.657754i 0.954848 0.297094i \(-0.0960176\pi\)
−0.297094 + 0.954848i \(0.596018\pi\)
\(368\) 3.88930 3.88930i 0.202744 0.202744i
\(369\) −1.90599 −0.0992220
\(370\) 17.7045 + 0.908649i 0.920412 + 0.0472384i
\(371\) 25.0976i 1.30300i
\(372\) 5.55069 + 5.55069i 0.287790 + 0.287790i
\(373\) −6.72967 6.72967i −0.348449 0.348449i 0.511083 0.859532i \(-0.329245\pi\)
−0.859532 + 0.511083i \(0.829245\pi\)
\(374\) −3.65375 −0.188931
\(375\) 9.02371 6.60096i 0.465982 0.340872i
\(376\) 11.1298i 0.573974i
\(377\) 11.8839 + 11.8839i 0.612054 + 0.612054i
\(378\) −1.40368 + 1.40368i −0.0721977 + 0.0721977i
\(379\) 10.5434 0.541578 0.270789 0.962639i \(-0.412715\pi\)
0.270789 + 0.962639i \(0.412715\pi\)
\(380\) −5.87982 + 7.77352i −0.301629 + 0.398773i
\(381\) −1.89149 −0.0969039
\(382\) −9.80837 + 9.80837i −0.501840 + 0.501840i
\(383\) −8.53662 8.53662i −0.436201 0.436201i 0.454530 0.890731i \(-0.349807\pi\)
−0.890731 + 0.454530i \(0.849807\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) 17.4429 15.7399i 0.888974 0.802179i
\(386\) 11.6257 0.591733
\(387\) 7.12884 + 7.12884i 0.362379 + 0.362379i
\(388\) −3.10415 3.10415i −0.157589 0.157589i
\(389\) 25.1180i 1.27353i −0.771056 0.636767i \(-0.780271\pi\)
0.771056 0.636767i \(-0.219729\pi\)
\(390\) −4.50690 + 4.06687i −0.228216 + 0.205934i
\(391\) −3.79686 −0.192016
\(392\) −2.16328 + 2.16328i −0.109262 + 0.109262i
\(393\) −3.77362 3.77362i −0.190354 0.190354i
\(394\) −1.19486 −0.0601961
\(395\) 1.96590 38.3043i 0.0989151 1.92730i
\(396\) −5.29298 −0.265982
\(397\) 10.0839 + 10.0839i 0.506098 + 0.506098i 0.913326 0.407228i \(-0.133505\pi\)
−0.407228 + 0.913326i \(0.633505\pi\)
\(398\) −12.1810 12.1810i −0.610578 0.610578i
\(399\) 7.15956 + 4.85934i 0.358426 + 0.243271i
\(400\) 4.97373 + 0.511883i 0.248686 + 0.0255942i
\(401\) 1.57077i 0.0784407i 0.999231 + 0.0392203i \(0.0124874\pi\)
−0.999231 + 0.0392203i \(0.987513\pi\)
\(402\) 10.2011 10.2011i 0.508785 0.508785i
\(403\) 15.0692 15.0692i 0.750651 0.750651i
\(404\) 2.79454i 0.139034i
\(405\) −0.114611 + 2.23313i −0.00569508 + 0.110965i
\(406\) −12.2890 −0.609893
\(407\) 29.6725 29.6725i 1.47081 1.47081i
\(408\) −0.488117 + 0.488117i −0.0241654 + 0.0241654i
\(409\) −10.9037 −0.539153 −0.269576 0.962979i \(-0.586884\pi\)
−0.269576 + 0.962979i \(0.586884\pi\)
\(410\) 3.16414 2.85521i 0.156266 0.141009i
\(411\) 4.20549i 0.207441i
\(412\) 4.05319 4.05319i 0.199686 0.199686i
\(413\) −0.857911 0.857911i −0.0422150 0.0422150i
\(414\) −5.50029 −0.270325
\(415\) −11.5082 12.7533i −0.564913 0.626036i
\(416\) −2.71483 −0.133106
\(417\) 9.82829 9.82829i 0.481293 0.481293i
\(418\) 4.33682 + 22.6603i 0.212121 + 1.10835i
\(419\) 6.93967i 0.339025i −0.985528 0.169512i \(-0.945781\pi\)
0.985528 0.169512i \(-0.0542193\pi\)
\(420\) 0.227516 4.43300i 0.0111016 0.216308i
\(421\) 17.7896i 0.867010i −0.901151 0.433505i \(-0.857277\pi\)
0.901151 0.433505i \(-0.142723\pi\)
\(422\) 5.16783 + 5.16783i 0.251566 + 0.251566i
\(423\) 7.86994 7.86994i 0.382650 0.382650i
\(424\) 12.6429i 0.613995i
\(425\) −2.17790 2.67762i −0.105644 0.129884i
\(426\) 3.97022i 0.192358i
\(427\) −11.6649 11.6649i −0.564505 0.564505i
\(428\) −7.04015 7.04015i −0.340299 0.340299i
\(429\) 14.3696i 0.693769i
\(430\) −22.5137 1.15548i −1.08571 0.0557220i
\(431\) 35.0344i 1.68755i 0.536697 + 0.843775i \(0.319672\pi\)
−0.536697 + 0.843775i \(0.680328\pi\)
\(432\) −0.707107 + 0.707107i −0.0340207 + 0.0340207i
\(433\) −14.6222 14.6222i −0.702699 0.702699i 0.262290 0.964989i \(-0.415522\pi\)
−0.964989 + 0.262290i \(0.915522\pi\)
\(434\) 15.5828i 0.748000i
\(435\) −10.2770 + 9.27362i −0.492746 + 0.444636i
\(436\) 8.64011i 0.413786i
\(437\) 4.50668 + 23.5479i 0.215584 + 1.12645i
\(438\) −7.72265 + 7.72265i −0.369002 + 0.369002i
\(439\) 25.2333 1.20432 0.602160 0.798376i \(-0.294307\pi\)
0.602160 + 0.798376i \(0.294307\pi\)
\(440\) 8.78689 7.92898i 0.418899 0.377999i
\(441\) 3.05934 0.145683
\(442\) 1.32516 + 1.32516i 0.0630313 + 0.0630313i
\(443\) −17.3294 + 17.3294i −0.823344 + 0.823344i −0.986586 0.163242i \(-0.947805\pi\)
0.163242 + 0.986586i \(0.447805\pi\)
\(444\) 7.92810i 0.376251i
\(445\) −0.621328 + 12.1062i −0.0294538 + 0.573888i
\(446\) −6.05153 −0.286548
\(447\) −9.15374 + 9.15374i −0.432957 + 0.432957i
\(448\) 1.40368 1.40368i 0.0663178 0.0663178i
\(449\) −20.6855 −0.976211 −0.488105 0.872785i \(-0.662312\pi\)
−0.488105 + 0.872785i \(0.662312\pi\)
\(450\) −3.15500 3.87891i −0.148728 0.182854i
\(451\) 10.0884i 0.475043i
\(452\) 6.47280 6.47280i 0.304455 0.304455i
\(453\) −15.3808 + 15.3808i −0.722654 + 0.722654i
\(454\) 19.4016i 0.910561i
\(455\) −12.0349 0.617667i −0.564203 0.0289567i
\(456\) 3.60663 + 2.44789i 0.168896 + 0.114633i
\(457\) −7.86170 7.86170i −0.367755 0.367755i 0.498903 0.866658i \(-0.333736\pi\)
−0.866658 + 0.498903i \(0.833736\pi\)
\(458\) 17.8639 + 17.8639i 0.834725 + 0.834725i
\(459\) 0.690302 0.0322205
\(460\) 9.13105 8.23954i 0.425738 0.384171i
\(461\) 23.8664 1.11157 0.555784 0.831327i \(-0.312418\pi\)
0.555784 + 0.831327i \(0.312418\pi\)
\(462\) −7.42967 7.42967i −0.345659 0.345659i
\(463\) 22.3224 22.3224i 1.03741 1.03741i 0.0381357 0.999273i \(-0.487858\pi\)
0.999273 0.0381357i \(-0.0121419\pi\)
\(464\) −6.19060 −0.287391
\(465\) 11.7592 + 13.0316i 0.545322 + 0.604325i
\(466\) 10.9423i 0.506892i
\(467\) 20.6661 + 20.6661i 0.956312 + 0.956312i 0.999085 0.0427727i \(-0.0136191\pi\)
−0.0427727 + 0.999085i \(0.513619\pi\)
\(468\) 1.91968 + 1.91968i 0.0887371 + 0.0887371i
\(469\) 28.6382 1.32239
\(470\) −1.27560 + 24.8542i −0.0588389 + 1.14644i
\(471\) 3.31834i 0.152901i
\(472\) −0.432173 0.432173i −0.0198924 0.0198924i
\(473\) −37.7328 + 37.7328i −1.73495 + 1.73495i
\(474\) −17.1528 −0.787853
\(475\) −14.0213 + 16.6854i −0.643343 + 0.765578i
\(476\) −1.37032 −0.0628087
\(477\) 8.93991 8.93991i 0.409330 0.409330i
\(478\) 7.83618 + 7.83618i 0.358418 + 0.358418i
\(479\) 15.9212i 0.727459i −0.931505 0.363730i \(-0.881503\pi\)
0.931505 0.363730i \(-0.118497\pi\)
\(480\) 0.114611 2.23313i 0.00523126 0.101928i
\(481\) −21.5235 −0.981386
\(482\) 10.2642 + 10.2642i 0.467522 + 0.467522i
\(483\) −7.72067 7.72067i −0.351303 0.351303i
\(484\) 17.0156i 0.773438i
\(485\) −6.57619 7.28773i −0.298609 0.330919i
\(486\) 1.00000 0.0453609
\(487\) 10.4874 10.4874i 0.475228 0.475228i −0.428374 0.903602i \(-0.640913\pi\)
0.903602 + 0.428374i \(0.140913\pi\)
\(488\) −5.87621 5.87621i −0.266003 0.266003i
\(489\) 19.9985 0.904363
\(490\) −5.07883 + 4.58295i −0.229438 + 0.207037i
\(491\) 15.8352 0.714633 0.357317 0.933983i \(-0.383692\pi\)
0.357317 + 0.933983i \(0.383692\pi\)
\(492\) −1.34774 1.34774i −0.0607608 0.0607608i
\(493\) 3.02173 + 3.02173i 0.136092 + 0.136092i
\(494\) 6.64563 9.79141i 0.299001 0.440537i
\(495\) −11.8199 0.606635i −0.531265 0.0272662i
\(496\) 7.84986i 0.352469i
\(497\) −5.57293 + 5.57293i −0.249980 + 0.249980i
\(498\) −5.43217 + 5.43217i −0.243422 + 0.243422i
\(499\) 21.1108i 0.945050i −0.881317 0.472525i \(-0.843343\pi\)
0.881317 0.472525i \(-0.156657\pi\)
\(500\) 11.0483 + 1.71315i 0.494095 + 0.0766142i
\(501\) 12.9969 0.580657
\(502\) 4.79559 4.79559i 0.214038 0.214038i
\(503\) 11.3484 11.3484i 0.506001 0.506001i −0.407295 0.913297i \(-0.633528\pi\)
0.913297 + 0.407295i \(0.133528\pi\)
\(504\) −1.98511 −0.0884238
\(505\) −0.320286 + 6.24058i −0.0142525 + 0.277702i
\(506\) 29.1129i 1.29423i
\(507\) −3.98078 + 3.98078i −0.176793 + 0.176793i
\(508\) −1.33748 1.33748i −0.0593413 0.0593413i
\(509\) 36.8026 1.63125 0.815624 0.578582i \(-0.196394\pi\)
0.815624 + 0.578582i \(0.196394\pi\)
\(510\) −1.14597 + 1.03408i −0.0507445 + 0.0457900i
\(511\) −21.6803 −0.959080
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) −0.819353 4.28120i −0.0361753 0.189020i
\(514\) 18.5429i 0.817891i
\(515\) 9.51583 8.58674i 0.419317 0.378377i
\(516\) 10.0817i 0.443822i
\(517\) 41.6554 + 41.6554i 1.83200 + 1.83200i
\(518\) 11.1285 11.1285i 0.488960 0.488960i
\(519\) 2.98124i 0.130862i
\(520\) −6.06257 0.311150i −0.265861 0.0136448i
\(521\) 6.00142i 0.262927i −0.991321 0.131463i \(-0.958032\pi\)
0.991321 0.131463i \(-0.0419676\pi\)
\(522\) 4.37741 + 4.37741i 0.191594 + 0.191594i
\(523\) 19.4311 + 19.4311i 0.849664 + 0.849664i 0.990091 0.140427i \(-0.0448476\pi\)
−0.140427 + 0.990091i \(0.544848\pi\)
\(524\) 5.33670i 0.233135i
\(525\) 1.01614 9.87339i 0.0443481 0.430910i
\(526\) 11.4650i 0.499898i
\(527\) 3.83165 3.83165i 0.166909 0.166909i
\(528\) −3.74270 3.74270i −0.162880 0.162880i
\(529\) 7.25324i 0.315358i
\(530\) −1.44902 + 28.2333i −0.0629415 + 1.22638i
\(531\) 0.611185i 0.0265232i
\(532\) 1.62650 + 8.49864i 0.0705179 + 0.368463i
\(533\) −3.65889 + 3.65889i −0.158484 + 0.158484i
\(534\) 5.42118 0.234597
\(535\) −14.9147 16.5285i −0.644818 0.714587i
\(536\) 14.4265 0.623132
\(537\) −5.61326 5.61326i −0.242230 0.242230i
\(538\) 11.6819 11.6819i 0.503644 0.503644i
\(539\) 16.1930i 0.697484i
\(540\) −1.66010 + 1.49802i −0.0714395 + 0.0644644i
\(541\) 19.3859 0.833467 0.416734 0.909029i \(-0.363175\pi\)
0.416734 + 0.909029i \(0.363175\pi\)
\(542\) −0.848534 + 0.848534i −0.0364477 + 0.0364477i
\(543\) 3.37401 3.37401i 0.144793 0.144793i
\(544\) −0.690302 −0.0295964
\(545\) 0.990253 19.2945i 0.0424178 0.826485i
\(546\) 5.38924i 0.230638i
\(547\) −6.28887 + 6.28887i −0.268893 + 0.268893i −0.828654 0.559761i \(-0.810893\pi\)
0.559761 + 0.828654i \(0.310893\pi\)
\(548\) −2.97373 + 2.97373i −0.127031 + 0.127031i
\(549\) 8.31021i 0.354671i
\(550\) 20.5310 16.6994i 0.875445 0.712063i
\(551\) 15.1539 22.3272i 0.645579 0.951171i
\(552\) −3.88930 3.88930i −0.165539 0.165539i
\(553\) −24.0771 24.0771i −1.02386 1.02386i
\(554\) −7.28855 −0.309661
\(555\) 0.908649 17.7045i 0.0385700 0.751513i
\(556\) 13.8993 0.589462
\(557\) 9.88148 + 9.88148i 0.418692 + 0.418692i 0.884753 0.466061i \(-0.154327\pi\)
−0.466061 + 0.884753i \(0.654327\pi\)
\(558\) 5.55069 5.55069i 0.234979 0.234979i
\(559\) 27.3701 1.15763
\(560\) 3.29548 2.97373i 0.139260 0.125663i
\(561\) 3.65375i 0.154262i
\(562\) 14.9486 + 14.9486i 0.630570 + 0.630570i
\(563\) 16.7009 + 16.7009i 0.703858 + 0.703858i 0.965236 0.261379i \(-0.0841771\pi\)
−0.261379 + 0.965236i \(0.584177\pi\)
\(564\) 11.1298 0.468648
\(565\) 15.1965 13.7127i 0.639320 0.576900i
\(566\) 22.2529i 0.935358i
\(567\) 1.40368 + 1.40368i 0.0589492 + 0.0589492i
\(568\) −2.80737 + 2.80737i −0.117795 + 0.117795i
\(569\) −1.12910 −0.0473344 −0.0236672 0.999720i \(-0.507534\pi\)
−0.0236672 + 0.999720i \(0.507534\pi\)
\(570\) 7.77352 + 5.87982i 0.325597 + 0.246279i
\(571\) −7.89992 −0.330602 −0.165301 0.986243i \(-0.552859\pi\)
−0.165301 + 0.986243i \(0.552859\pi\)
\(572\) −10.1608 + 10.1608i −0.424845 + 0.424845i
\(573\) 9.80837 + 9.80837i 0.409750 + 0.409750i
\(574\) 3.78360i 0.157924i
\(575\) 21.3352 17.3534i 0.889738 0.723688i
\(576\) −1.00000 −0.0416667
\(577\) −31.1021 31.1021i −1.29480 1.29480i −0.931785 0.363011i \(-0.881749\pi\)
−0.363011 0.931785i \(-0.618251\pi\)
\(578\) −11.6839 11.6839i −0.485985 0.485985i
\(579\) 11.6257i 0.483148i
\(580\) −13.8244 0.709511i −0.574027 0.0294609i
\(581\) −15.2501 −0.632681
\(582\) −3.10415 + 3.10415i −0.128671 + 0.128671i
\(583\) 47.3187 + 47.3187i 1.95974 + 1.95974i
\(584\) −10.9215 −0.451934
\(585\) 4.06687 + 4.50690i 0.168144 + 0.186338i
\(586\) 16.5446 0.683451
\(587\) −6.49465 6.49465i −0.268063 0.268063i 0.560256 0.828319i \(-0.310703\pi\)
−0.828319 + 0.560256i \(0.810703\pi\)
\(588\) 2.16328 + 2.16328i 0.0892123 + 0.0892123i
\(589\) −28.3116 19.2156i −1.16656 0.791766i
\(590\) −0.915567 1.01463i −0.0376933 0.0417717i
\(591\) 1.19486i 0.0491499i
\(592\) 5.60602 5.60602i 0.230406 0.230406i
\(593\) 16.2871 16.2871i 0.668830 0.668830i −0.288615 0.957445i \(-0.593195\pi\)
0.957445 + 0.288615i \(0.0931948\pi\)
\(594\) 5.29298i 0.217174i
\(595\) −3.06011 0.157054i −0.125452 0.00643860i
\(596\) −12.9453 −0.530262
\(597\) −12.1810 + 12.1810i −0.498535 + 0.498535i
\(598\) −10.5588 + 10.5588i −0.431781 + 0.431781i
\(599\) 45.2347 1.84824 0.924119 0.382104i \(-0.124800\pi\)
0.924119 + 0.382104i \(0.124800\pi\)
\(600\) 0.511883 4.97373i 0.0208975 0.203052i
\(601\) 18.3122i 0.746972i 0.927636 + 0.373486i \(0.121838\pi\)
−0.927636 + 0.373486i \(0.878162\pi\)
\(602\) −14.1515 + 14.1515i −0.576773 + 0.576773i
\(603\) −10.2011 10.2011i −0.415421 0.415421i
\(604\) −21.7518 −0.885066
\(605\) 1.95018 37.9981i 0.0792861 1.54484i
\(606\) 2.79454 0.113521
\(607\) 17.5130 17.5130i 0.710829 0.710829i −0.255879 0.966709i \(-0.582365\pi\)
0.966709 + 0.255879i \(0.0823650\pi\)
\(608\) 0.819353 + 4.28120i 0.0332292 + 0.173626i
\(609\) 12.2890i 0.497976i
\(610\) −12.4489 13.7958i −0.504039 0.558576i
\(611\) 30.2155i 1.22239i
\(612\) 0.488117 + 0.488117i 0.0197310 + 0.0197310i
\(613\) 2.65427 2.65427i 0.107205 0.107205i −0.651470 0.758675i \(-0.725847\pi\)
0.758675 + 0.651470i \(0.225847\pi\)
\(614\) 19.5672i 0.789668i
\(615\) −2.85521 3.16414i −0.115133 0.127591i
\(616\) 10.5071i 0.423345i
\(617\) 6.67261 + 6.67261i 0.268629 + 0.268629i 0.828548 0.559919i \(-0.189168\pi\)
−0.559919 + 0.828548i \(0.689168\pi\)
\(618\) −4.05319 4.05319i −0.163043 0.163043i
\(619\) 21.6368i 0.869657i 0.900513 + 0.434829i \(0.143191\pi\)
−0.900513 + 0.434829i \(0.856809\pi\)
\(620\) −0.899682 + 17.5298i −0.0361321 + 0.704012i
\(621\) 5.50029i 0.220719i
\(622\) −0.700444 + 0.700444i −0.0280852 + 0.0280852i
\(623\) 7.60962 + 7.60962i 0.304873 + 0.304873i
\(624\) 2.71483i 0.108680i
\(625\) 24.4760 + 5.09193i 0.979038 + 0.203677i
\(626\) 8.03830i 0.321275i
\(627\) 22.6603 4.33682i 0.904965 0.173196i
\(628\) 2.34642 2.34642i 0.0936322 0.0936322i
\(629\) −5.47278 −0.218214
\(630\) −4.43300 0.227516i −0.176615 0.00906444i
\(631\) −0.652184 −0.0259631 −0.0129815 0.999916i \(-0.504132\pi\)
−0.0129815 + 0.999916i \(0.504132\pi\)
\(632\) −12.1288 12.1288i −0.482459 0.482459i
\(633\) 5.16783 5.16783i 0.205403 0.205403i
\(634\) 13.6236i 0.541061i
\(635\) −2.83349 3.14007i −0.112443 0.124610i
\(636\) 12.6429 0.501325
\(637\) 5.87295 5.87295i 0.232695 0.232695i
\(638\) −23.1696 + 23.1696i −0.917291 + 0.917291i
\(639\) 3.97022 0.157059
\(640\) 1.66010 1.49802i 0.0656213 0.0592144i
\(641\) 6.00938i 0.237356i 0.992933 + 0.118678i \(0.0378657\pi\)
−0.992933 + 0.118678i \(0.962134\pi\)
\(642\) −7.04015 + 7.04015i −0.277853 + 0.277853i
\(643\) −7.37061 + 7.37061i −0.290669 + 0.290669i −0.837344 0.546676i \(-0.815893\pi\)
0.546676 + 0.837344i \(0.315893\pi\)
\(644\) 10.9187i 0.430256i
\(645\) −1.15548 + 22.5137i −0.0454968 + 0.886477i
\(646\) 1.68979 2.48967i 0.0664837 0.0979546i
\(647\) 6.73802 + 6.73802i 0.264899 + 0.264899i 0.827041 0.562142i \(-0.190023\pi\)
−0.562142 + 0.827041i \(0.690023\pi\)
\(648\) 0.707107 + 0.707107i 0.0277778 + 0.0277778i
\(649\) −3.23499 −0.126985
\(650\) −13.5028 1.38968i −0.529625 0.0545076i
\(651\) 15.5828 0.610739
\(652\) 14.1411 + 14.1411i 0.553807 + 0.553807i
\(653\) −4.47188 + 4.47188i −0.174998 + 0.174998i −0.789171 0.614173i \(-0.789490\pi\)
0.614173 + 0.789171i \(0.289490\pi\)
\(654\) −8.64011 −0.337855
\(655\) 0.611645 11.9175i 0.0238990 0.465657i
\(656\) 1.90599i 0.0744165i
\(657\) 7.72265 + 7.72265i 0.301289 + 0.301289i
\(658\) 15.6227 + 15.6227i 0.609036 + 0.609036i
\(659\) −29.4239 −1.14619 −0.573096 0.819489i \(-0.694258\pi\)
−0.573096 + 0.819489i \(0.694258\pi\)
\(660\) −7.92898 8.78689i −0.308635 0.342029i
\(661\) 18.0453i 0.701881i −0.936398 0.350941i \(-0.885862\pi\)
0.936398 0.350941i \(-0.114138\pi\)
\(662\) −14.1325 14.1325i −0.549276 0.549276i
\(663\) 1.32516 1.32516i 0.0514648 0.0514648i
\(664\) −7.68225 −0.298129
\(665\) 2.65815 + 19.1650i 0.103079 + 0.743186i
\(666\) −7.92810 −0.307208
\(667\) −24.0771 + 24.0771i −0.932267 + 0.932267i
\(668\) 9.19018 + 9.19018i 0.355579 + 0.355579i
\(669\) 6.05153i 0.233966i
\(670\) 32.2163 + 1.65344i 1.24462 + 0.0638781i
\(671\) −43.9858 −1.69805
\(672\) −1.40368 1.40368i −0.0541483 0.0541483i
\(673\) 8.20956 + 8.20956i 0.316455 + 0.316455i 0.847404 0.530949i \(-0.178164\pi\)
−0.530949 + 0.847404i \(0.678164\pi\)
\(674\) 5.91793i 0.227950i
\(675\) −3.87891 + 3.15500i −0.149299 + 0.121436i
\(676\) −5.62968 −0.216526
\(677\) 24.0239 24.0239i 0.923313 0.923313i −0.0739493 0.997262i \(-0.523560\pi\)
0.997262 + 0.0739493i \(0.0235603\pi\)
\(678\) −6.47280 6.47280i −0.248586 0.248586i
\(679\) −8.71448 −0.334431
\(680\) −1.54153 0.0791163i −0.0591151 0.00303397i
\(681\) 19.4016 0.743470
\(682\) 29.3797 + 29.3797i 1.12501 + 1.12501i
\(683\) 14.5663 + 14.5663i 0.557363 + 0.557363i 0.928556 0.371192i \(-0.121051\pi\)
−0.371192 + 0.928556i \(0.621051\pi\)
\(684\) 2.44789 3.60663i 0.0935976 0.137903i
\(685\) −6.98154 + 6.29990i −0.266751 + 0.240707i
\(686\) 19.9689i 0.762416i
\(687\) 17.8639 17.8639i 0.681550 0.681550i
\(688\) −7.12884 + 7.12884i −0.271784 + 0.271784i
\(689\) 34.3235i 1.30762i
\(690\) −8.23954 9.13105i −0.313674 0.347613i
\(691\) −39.3797 −1.49807 −0.749037 0.662528i \(-0.769483\pi\)
−0.749037 + 0.662528i \(0.769483\pi\)
\(692\) −2.10806 + 2.10806i −0.0801363 + 0.0801363i
\(693\) −7.42967 + 7.42967i −0.282230 + 0.282230i
\(694\) 3.75046 0.142365
\(695\) 31.0389 + 1.59302i 1.17737 + 0.0604265i
\(696\) 6.19060i 0.234654i
\(697\) −0.930347 + 0.930347i −0.0352394 + 0.0352394i
\(698\) −12.5953 12.5953i −0.476740 0.476740i
\(699\) −10.9423 −0.413876
\(700\) 7.70006 6.26302i 0.291035 0.236720i
\(701\) 5.40623 0.204190 0.102095 0.994775i \(-0.467445\pi\)
0.102095 + 0.994775i \(0.467445\pi\)
\(702\) 1.91968 1.91968i 0.0724536 0.0724536i
\(703\) 6.49592 + 33.9418i 0.244998 + 1.28014i
\(704\) 5.29298i 0.199487i
\(705\) 24.8542 + 1.27560i 0.936064 + 0.0480418i
\(706\) 16.4284i 0.618293i
\(707\) 3.92266 + 3.92266i 0.147527 + 0.147527i
\(708\) −0.432173 + 0.432173i −0.0162421 + 0.0162421i
\(709\) 10.1007i 0.379340i 0.981848 + 0.189670i \(0.0607418\pi\)
−0.981848 + 0.189670i \(0.939258\pi\)
\(710\) −6.59097 + 5.94746i −0.247355 + 0.223204i
\(711\) 17.1528i 0.643279i
\(712\) 3.83335 + 3.83335i 0.143661 + 0.143661i
\(713\) 30.5304 + 30.5304i 1.14337 + 1.14337i
\(714\) 1.37032i 0.0512831i
\(715\) −23.8549 + 21.5259i −0.892124 + 0.805022i
\(716\) 7.93836i 0.296670i
\(717\) 7.83618 7.83618i 0.292647 0.292647i
\(718\) −3.36648 3.36648i −0.125636 0.125636i
\(719\) 41.4079i 1.54425i −0.635469 0.772126i \(-0.719193\pi\)
0.635469 0.772126i \(-0.280807\pi\)
\(720\) −2.23313 0.114611i −0.0832238 0.00427131i
\(721\) 11.3788i 0.423768i
\(722\) −17.4464 7.52482i −0.649288 0.280045i
\(723\) 10.2642 10.2642i 0.381730 0.381730i
\(724\) 4.77157 0.177334
\(725\) −30.7903 3.16886i −1.14352 0.117689i
\(726\) −17.0156 −0.631509
\(727\) 16.2887 + 16.2887i 0.604113 + 0.604113i 0.941401 0.337288i \(-0.109510\pi\)
−0.337288 + 0.941401i \(0.609510\pi\)
\(728\) −3.81077 + 3.81077i −0.141236 + 0.141236i
\(729\) 1.00000i 0.0370370i
\(730\) −24.3891 1.25172i −0.902679 0.0463283i
\(731\) 6.95941 0.257403
\(732\) −5.87621 + 5.87621i −0.217191 + 0.217191i
\(733\) −8.03197 + 8.03197i −0.296667 + 0.296667i −0.839707 0.543040i \(-0.817273\pi\)
0.543040 + 0.839707i \(0.317273\pi\)
\(734\) 17.8202 0.657754
\(735\) 4.58295 + 5.07883i 0.169045 + 0.187335i
\(736\) 5.50029i 0.202744i
\(737\) 53.9942 53.9942i 1.98890 1.98890i
\(738\) −1.34774 + 1.34774i −0.0496110 + 0.0496110i
\(739\) 2.95079i 0.108546i 0.998526 + 0.0542732i \(0.0172842\pi\)
−0.998526 + 0.0542732i \(0.982716\pi\)
\(740\) 13.1615 11.8764i 0.483825 0.436587i
\(741\) −9.79141 6.64563i −0.359697 0.244133i
\(742\) 17.7467 + 17.7467i 0.651501 + 0.651501i
\(743\) −15.8575 15.8575i −0.581756 0.581756i 0.353630 0.935386i \(-0.384947\pi\)
−0.935386 + 0.353630i \(0.884947\pi\)
\(744\) 7.84986 0.287790
\(745\) −28.9086 1.48368i −1.05913 0.0543579i
\(746\) −9.51719 −0.348449
\(747\) 5.43217 + 5.43217i 0.198753 + 0.198753i
\(748\) −2.58359 + 2.58359i −0.0944655 + 0.0944655i
\(749\) −19.7643 −0.722172
\(750\) 1.71315 11.0483i 0.0625552 0.403427i
\(751\) 42.3190i 1.54424i 0.635475 + 0.772121i \(0.280804\pi\)
−0.635475 + 0.772121i \(0.719196\pi\)
\(752\) 7.86994 + 7.86994i 0.286987 + 0.286987i
\(753\) −4.79559 4.79559i −0.174761 0.174761i
\(754\) 16.8064 0.612054
\(755\) −48.5745 2.49299i −1.76781 0.0907294i
\(756\) 1.98511i 0.0721977i
\(757\) 6.14572 + 6.14572i 0.223370 + 0.223370i 0.809916 0.586546i \(-0.199513\pi\)
−0.586546 + 0.809916i \(0.699513\pi\)
\(758\) 7.45532 7.45532i 0.270789 0.270789i
\(759\) −29.1129 −1.05673
\(760\) 1.33905 + 9.65437i 0.0485724 + 0.350201i
\(761\) −32.5422 −1.17966 −0.589828 0.807529i \(-0.700804\pi\)
−0.589828 + 0.807529i \(0.700804\pi\)
\(762\) −1.33748 + 1.33748i −0.0484520 + 0.0484520i
\(763\) −12.1280 12.1280i −0.439063 0.439063i
\(764\) 13.8711i 0.501840i
\(765\) 1.03408 + 1.14597i 0.0373874 + 0.0414327i
\(766\) −12.0726 −0.436201
\(767\) 1.17328 + 1.17328i 0.0423646 + 0.0423646i
\(768\) −0.707107 0.707107i −0.0255155 0.0255155i
\(769\) 7.15156i 0.257892i −0.991652 0.128946i \(-0.958841\pi\)
0.991652 0.128946i \(-0.0411594\pi\)
\(770\) 1.20424 23.4638i 0.0433976 0.845576i
\(771\) −18.5429 −0.667805
\(772\) 8.22061 8.22061i 0.295866 0.295866i
\(773\) −28.5163 28.5163i −1.02566 1.02566i −0.999662 0.0259998i \(-0.991723\pi\)
−0.0259998 0.999662i \(-0.508277\pi\)
\(774\) 10.0817 0.362379
\(775\) −4.01821 + 39.0431i −0.144338 + 1.40247i
\(776\) −4.38992 −0.157589
\(777\) −11.1285 11.1285i −0.399234 0.399234i
\(778\) −17.7611 17.7611i −0.636767 0.636767i