Properties

Label 56.3.j.a.5.5
Level 56
Weight 3
Character 56.5
Analytic conductor 1.526
Analytic rank 0
Dimension 28
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 56 = 2^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 56.j (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.52588948042\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 5.5
Character \(\chi\) \(=\) 56.5
Dual form 56.3.j.a.45.5

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.33557 - 1.48871i) q^{2} +(1.70138 + 2.94687i) q^{3} +(-0.432496 + 3.97655i) q^{4} +(-2.15858 + 3.73877i) q^{5} +(2.11472 - 6.46862i) q^{6} +(-1.43197 + 6.85197i) q^{7} +(6.49755 - 4.66711i) q^{8} +(-1.28938 + 2.23327i) q^{9} +O(q^{10})\) \(q+(-1.33557 - 1.48871i) q^{2} +(1.70138 + 2.94687i) q^{3} +(-0.432496 + 3.97655i) q^{4} +(-2.15858 + 3.73877i) q^{5} +(2.11472 - 6.46862i) q^{6} +(-1.43197 + 6.85197i) q^{7} +(6.49755 - 4.66711i) q^{8} +(-1.28938 + 2.23327i) q^{9} +(8.44888 - 1.77990i) q^{10} +(15.4899 - 8.94308i) q^{11} +(-12.4542 + 5.49111i) q^{12} -3.25607 q^{13} +(12.1131 - 7.01951i) q^{14} -14.6903 q^{15} +(-15.6259 - 3.43968i) q^{16} +(-13.6263 + 7.86717i) q^{17} +(5.04674 - 1.06319i) q^{18} +(-0.778522 + 1.34844i) q^{19} +(-13.9338 - 10.2007i) q^{20} +(-22.6282 + 7.43796i) q^{21} +(-34.0014 - 11.1157i) q^{22} +(20.7069 - 35.8655i) q^{23} +(24.8082 + 11.2069i) q^{24} +(3.18105 + 5.50975i) q^{25} +(4.34871 + 4.84733i) q^{26} +21.8499 q^{27} +(-26.6279 - 8.65775i) q^{28} -3.74374i q^{29} +(19.6199 + 21.8695i) q^{30} +(-0.0145172 + 0.00838150i) q^{31} +(15.7488 + 27.8563i) q^{32} +(52.7082 + 30.4311i) q^{33} +(29.9109 + 9.77845i) q^{34} +(-22.5269 - 20.1443i) q^{35} +(-8.32306 - 6.09316i) q^{36} +(1.16774 + 0.674194i) q^{37} +(3.04720 - 0.641947i) q^{38} +(-5.53981 - 9.59523i) q^{39} +(3.42377 + 34.3672i) q^{40} -70.3018i q^{41} +(41.2945 + 23.7528i) q^{42} +13.0380i q^{43} +(28.8633 + 65.4641i) q^{44} +(-5.56646 - 9.64139i) q^{45} +(-81.0487 + 17.0743i) q^{46} +(30.9797 + 17.8862i) q^{47} +(-16.4493 - 51.8998i) q^{48} +(-44.8989 - 19.6236i) q^{49} +(3.95387 - 12.0943i) q^{50} +(-46.3671 - 26.7701i) q^{51} +(1.40824 - 12.9479i) q^{52} +(-39.7989 + 22.9779i) q^{53} +(-29.1821 - 32.5281i) q^{54} +77.2174i q^{55} +(22.6746 + 51.2041i) q^{56} -5.29824 q^{57} +(-5.57333 + 5.00004i) q^{58} +(34.3509 + 59.4974i) q^{59} +(6.35348 - 58.4165i) q^{60} +(48.0386 - 83.2052i) q^{61} +(0.0318663 + 0.0104177i) q^{62} +(-13.4559 - 12.0328i) q^{63} +(20.4362 - 60.6495i) q^{64} +(7.02849 - 12.1737i) q^{65} +(-25.0926 - 119.110i) q^{66} +(-12.0808 + 6.97484i) q^{67} +(-25.3909 - 57.5883i) q^{68} +140.921 q^{69} +(0.0973128 + 60.4402i) q^{70} -75.7095 q^{71} +(2.04511 + 20.5284i) q^{72} +(-46.0282 + 26.5744i) q^{73} +(-0.555921 - 2.63886i) q^{74} +(-10.8244 + 18.7483i) q^{75} +(-5.02543 - 3.67902i) q^{76} +(39.0967 + 118.942i) q^{77} +(-6.88567 + 21.0623i) q^{78} +(11.6744 - 20.2206i) q^{79} +(46.5900 - 50.9968i) q^{80} +(48.7794 + 84.4884i) q^{81} +(-104.659 + 93.8931i) q^{82} -102.487 q^{83} +(-19.7908 - 93.1991i) q^{84} -67.9277i q^{85} +(19.4098 - 17.4132i) q^{86} +(11.0323 - 6.36952i) q^{87} +(58.9078 - 130.401i) q^{88} +(-76.6985 - 44.2819i) q^{89} +(-6.91880 + 21.1636i) q^{90} +(4.66259 - 22.3105i) q^{91} +(133.665 + 97.8538i) q^{92} +(-0.0493984 - 0.0285202i) q^{93} +(-14.7484 - 70.0080i) q^{94} +(-3.36100 - 5.82143i) q^{95} +(-55.2944 + 93.8040i) q^{96} +140.869i q^{97} +(30.7519 + 93.0501i) q^{98} +46.1241i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28q - 2q^{2} - 4q^{4} - 4q^{7} - 20q^{8} - 32q^{9} + O(q^{10}) \) \( 28q - 2q^{2} - 4q^{4} - 4q^{7} - 20q^{8} - 32q^{9} + 24q^{10} - 18q^{12} + 24q^{14} + 28q^{15} + 16q^{16} - 6q^{17} - 42q^{18} - 92q^{22} + 30q^{23} - 30q^{24} - 32q^{25} - 30q^{26} - 42q^{28} + 22q^{30} - 6q^{31} + 88q^{32} - 6q^{33} + 256q^{36} + 6q^{38} - 20q^{39} + 102q^{40} + 18q^{42} - 42q^{44} + 68q^{46} - 294q^{47} - 20q^{49} + 400q^{50} - 168q^{52} + 330q^{54} - 96q^{56} + 124q^{57} - 22q^{58} - 62q^{60} + 432q^{63} - 520q^{64} - 52q^{65} - 306q^{66} - 456q^{68} - 324q^{70} - 136q^{71} + 96q^{72} + 234q^{73} - 138q^{74} - 956q^{78} - 162q^{79} + 276q^{80} - 18q^{81} - 642q^{82} + 504q^{84} + 168q^{86} + 48q^{87} + 50q^{88} - 150q^{89} + 1020q^{92} + 618q^{94} + 290q^{95} + 1044q^{96} + 424q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/56\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(29\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.33557 1.48871i −0.667786 0.744353i
\(3\) 1.70138 + 2.94687i 0.567126 + 0.982291i 0.996848 + 0.0793303i \(0.0252782\pi\)
−0.429722 + 0.902961i \(0.641388\pi\)
\(4\) −0.432496 + 3.97655i −0.108124 + 0.994137i
\(5\) −2.15858 + 3.73877i −0.431716 + 0.747754i −0.997021 0.0771275i \(-0.975425\pi\)
0.565305 + 0.824882i \(0.308758\pi\)
\(6\) 2.11472 6.46862i 0.352453 1.07810i
\(7\) −1.43197 + 6.85197i −0.204567 + 0.978853i
\(8\) 6.49755 4.66711i 0.812193 0.583389i
\(9\) −1.28938 + 2.23327i −0.143264 + 0.248141i
\(10\) 8.44888 1.77990i 0.844888 0.177990i
\(11\) 15.4899 8.94308i 1.40817 0.813007i 0.412958 0.910750i \(-0.364496\pi\)
0.995212 + 0.0977432i \(0.0311624\pi\)
\(12\) −12.4542 + 5.49111i −1.03785 + 0.457592i
\(13\) −3.25607 −0.250467 −0.125233 0.992127i \(-0.539968\pi\)
−0.125233 + 0.992127i \(0.539968\pi\)
\(14\) 12.1131 7.01951i 0.865219 0.501394i
\(15\) −14.6903 −0.979350
\(16\) −15.6259 3.43968i −0.976618 0.214980i
\(17\) −13.6263 + 7.86717i −0.801550 + 0.462775i −0.844013 0.536323i \(-0.819813\pi\)
0.0424631 + 0.999098i \(0.486479\pi\)
\(18\) 5.04674 1.06319i 0.280375 0.0590659i
\(19\) −0.778522 + 1.34844i −0.0409748 + 0.0709705i −0.885786 0.464095i \(-0.846380\pi\)
0.844811 + 0.535065i \(0.179713\pi\)
\(20\) −13.9338 10.2007i −0.696692 0.510035i
\(21\) −22.6282 + 7.43796i −1.07753 + 0.354188i
\(22\) −34.0014 11.1157i −1.54552 0.505261i
\(23\) 20.7069 35.8655i 0.900301 1.55937i 0.0731984 0.997317i \(-0.476679\pi\)
0.827103 0.562050i \(-0.189987\pi\)
\(24\) 24.8082 + 11.2069i 1.03367 + 0.466956i
\(25\) 3.18105 + 5.50975i 0.127242 + 0.220390i
\(26\) 4.34871 + 4.84733i 0.167258 + 0.186436i
\(27\) 21.8499 0.809257
\(28\) −26.6279 8.65775i −0.950995 0.309205i
\(29\) 3.74374i 0.129095i −0.997915 0.0645473i \(-0.979440\pi\)
0.997915 0.0645473i \(-0.0205603\pi\)
\(30\) 19.6199 + 21.8695i 0.653996 + 0.728983i
\(31\) −0.0145172 + 0.00838150i −0.000468296 + 0.000270371i −0.500234 0.865890i \(-0.666753\pi\)
0.499766 + 0.866161i \(0.333419\pi\)
\(32\) 15.7488 + 27.8563i 0.492151 + 0.870510i
\(33\) 52.7082 + 30.4311i 1.59722 + 0.922155i
\(34\) 29.9109 + 9.77845i 0.879732 + 0.287602i
\(35\) −22.5269 20.1443i −0.643626 0.575553i
\(36\) −8.32306 6.09316i −0.231196 0.169254i
\(37\) 1.16774 + 0.674194i 0.0315605 + 0.0182215i 0.515697 0.856771i \(-0.327533\pi\)
−0.484137 + 0.874992i \(0.660866\pi\)
\(38\) 3.04720 0.641947i 0.0801895 0.0168933i
\(39\) −5.53981 9.59523i −0.142046 0.246031i
\(40\) 3.42377 + 34.3672i 0.0855944 + 0.859179i
\(41\) 70.3018i 1.71468i −0.514753 0.857339i \(-0.672116\pi\)
0.514753 0.857339i \(-0.327884\pi\)
\(42\) 41.2945 + 23.7528i 0.983203 + 0.565544i
\(43\) 13.0380i 0.303210i 0.988441 + 0.151605i \(0.0484442\pi\)
−0.988441 + 0.151605i \(0.951556\pi\)
\(44\) 28.8633 + 65.4641i 0.655984 + 1.48782i
\(45\) −5.56646 9.64139i −0.123699 0.214253i
\(46\) −81.0487 + 17.0743i −1.76193 + 0.371181i
\(47\) 30.9797 + 17.8862i 0.659144 + 0.380557i 0.791951 0.610585i \(-0.209066\pi\)
−0.132807 + 0.991142i \(0.542399\pi\)
\(48\) −16.4493 51.8998i −0.342693 1.08124i
\(49\) −44.8989 19.6236i −0.916305 0.400482i
\(50\) 3.95387 12.0943i 0.0790774 0.241886i
\(51\) −46.3671 26.7701i −0.909160 0.524904i
\(52\) 1.40824 12.9479i 0.0270815 0.248998i
\(53\) −39.7989 + 22.9779i −0.750923 + 0.433546i −0.826027 0.563630i \(-0.809404\pi\)
0.0751042 + 0.997176i \(0.476071\pi\)
\(54\) −29.1821 32.5281i −0.540410 0.602373i
\(55\) 77.2174i 1.40395i
\(56\) 22.6746 + 51.2041i 0.404903 + 0.914360i
\(57\) −5.29824 −0.0929516
\(58\) −5.57333 + 5.00004i −0.0960920 + 0.0862075i
\(59\) 34.3509 + 59.4974i 0.582218 + 1.00843i 0.995216 + 0.0976993i \(0.0311484\pi\)
−0.412998 + 0.910732i \(0.635518\pi\)
\(60\) 6.35348 58.4165i 0.105891 0.973609i
\(61\) 48.0386 83.2052i 0.787517 1.36402i −0.139966 0.990156i \(-0.544699\pi\)
0.927484 0.373864i \(-0.121967\pi\)
\(62\) 0.0318663 + 0.0104177i 0.000513973 + 0.000168028i
\(63\) −13.4559 12.0328i −0.213586 0.190996i
\(64\) 20.4362 60.6495i 0.319316 0.947648i
\(65\) 7.02849 12.1737i 0.108131 0.187288i
\(66\) −25.0926 119.110i −0.380191 1.80470i
\(67\) −12.0808 + 6.97484i −0.180310 + 0.104102i −0.587438 0.809269i \(-0.699864\pi\)
0.407128 + 0.913371i \(0.366530\pi\)
\(68\) −25.3909 57.5883i −0.373395 0.846887i
\(69\) 140.921 2.04234
\(70\) 0.0973128 + 60.4402i 0.00139018 + 0.863431i
\(71\) −75.7095 −1.06633 −0.533166 0.846011i \(-0.678998\pi\)
−0.533166 + 0.846011i \(0.678998\pi\)
\(72\) 2.04511 + 20.5284i 0.0284044 + 0.285117i
\(73\) −46.0282 + 26.5744i −0.630523 + 0.364033i −0.780955 0.624588i \(-0.785267\pi\)
0.150432 + 0.988620i \(0.451934\pi\)
\(74\) −0.555921 2.63886i −0.00751245 0.0356602i
\(75\) −10.8244 + 18.7483i −0.144325 + 0.249978i
\(76\) −5.02543 3.67902i −0.0661240 0.0484082i
\(77\) 39.0967 + 118.942i 0.507749 + 1.54470i
\(78\) −6.88567 + 21.0623i −0.0882778 + 0.270029i
\(79\) 11.6744 20.2206i 0.147777 0.255957i −0.782628 0.622489i \(-0.786122\pi\)
0.930406 + 0.366532i \(0.119455\pi\)
\(80\) 46.5900 50.9968i 0.582374 0.637460i
\(81\) 48.7794 + 84.4884i 0.602215 + 1.04307i
\(82\) −104.659 + 93.8931i −1.27633 + 1.14504i
\(83\) −102.487 −1.23479 −0.617393 0.786655i \(-0.711811\pi\)
−0.617393 + 0.786655i \(0.711811\pi\)
\(84\) −19.7908 93.1991i −0.235605 1.10951i
\(85\) 67.9277i 0.799150i
\(86\) 19.4098 17.4132i 0.225696 0.202480i
\(87\) 11.0323 6.36952i 0.126808 0.0732129i
\(88\) 58.9078 130.401i 0.669407 1.48183i
\(89\) −76.6985 44.2819i −0.861781 0.497549i 0.00282755 0.999996i \(-0.499100\pi\)
−0.864608 + 0.502447i \(0.832433\pi\)
\(90\) −6.91880 + 21.1636i −0.0768755 + 0.235151i
\(91\) 4.66259 22.3105i 0.0512373 0.245170i
\(92\) 133.665 + 97.8538i 1.45288 + 1.06363i
\(93\) −0.0493984 0.0285202i −0.000531166 0.000306669i
\(94\) −14.7484 70.0080i −0.156898 0.744766i
\(95\) −3.36100 5.82143i −0.0353790 0.0612782i
\(96\) −55.2944 + 93.8040i −0.575983 + 0.977125i
\(97\) 140.869i 1.45226i 0.687558 + 0.726130i \(0.258683\pi\)
−0.687558 + 0.726130i \(0.741317\pi\)
\(98\) 30.7519 + 93.0501i 0.313795 + 0.949491i
\(99\) 46.1241i 0.465900i
\(100\) −23.2856 + 10.2667i −0.232856 + 0.102667i
\(101\) −17.6988 30.6553i −0.175236 0.303518i 0.765007 0.644022i \(-0.222735\pi\)
−0.940243 + 0.340504i \(0.889402\pi\)
\(102\) 22.0738 + 104.780i 0.216410 + 1.02726i
\(103\) 87.1651 + 50.3248i 0.846263 + 0.488590i 0.859388 0.511324i \(-0.170845\pi\)
−0.0131250 + 0.999914i \(0.504178\pi\)
\(104\) −21.1565 + 15.1964i −0.203427 + 0.146119i
\(105\) 21.0360 100.657i 0.200343 0.958640i
\(106\) 87.3617 + 28.5603i 0.824167 + 0.269437i
\(107\) −92.6215 53.4751i −0.865622 0.499767i 0.000269099 1.00000i \(-0.499914\pi\)
−0.865891 + 0.500233i \(0.833248\pi\)
\(108\) −9.45000 + 86.8873i −0.0875000 + 0.804512i
\(109\) −45.5799 + 26.3156i −0.418165 + 0.241427i −0.694292 0.719694i \(-0.744282\pi\)
0.276127 + 0.961121i \(0.410949\pi\)
\(110\) 114.954 103.129i 1.04504 0.937540i
\(111\) 4.58824i 0.0413355i
\(112\) 45.9444 102.143i 0.410218 0.911988i
\(113\) 45.4346 0.402076 0.201038 0.979583i \(-0.435568\pi\)
0.201038 + 0.979583i \(0.435568\pi\)
\(114\) 7.07618 + 7.88753i 0.0620718 + 0.0691888i
\(115\) 89.3952 + 154.837i 0.777350 + 1.34641i
\(116\) 14.8872 + 1.61915i 0.128338 + 0.0139582i
\(117\) 4.19831 7.27168i 0.0358830 0.0621511i
\(118\) 42.6962 130.601i 0.361832 1.10679i
\(119\) −34.3931 104.633i −0.289018 0.879267i
\(120\) −95.4506 + 68.5610i −0.795422 + 0.571342i
\(121\) 99.4572 172.265i 0.821961 1.42368i
\(122\) −188.027 + 39.6112i −1.54121 + 0.324682i
\(123\) 207.171 119.610i 1.68431 0.972439i
\(124\) −0.0270508 0.0613532i −0.000218152 0.000494784i
\(125\) −135.395 −1.08316
\(126\) 0.0581276 + 36.1026i 0.000461330 + 0.286528i
\(127\) 125.695 0.989723 0.494861 0.868972i \(-0.335219\pi\)
0.494861 + 0.868972i \(0.335219\pi\)
\(128\) −117.583 + 50.5782i −0.918620 + 0.395143i
\(129\) −38.4215 + 22.1827i −0.297841 + 0.171959i
\(130\) −27.5101 + 5.79549i −0.211616 + 0.0445807i
\(131\) 56.6504 98.1214i 0.432446 0.749018i −0.564638 0.825339i \(-0.690984\pi\)
0.997083 + 0.0763210i \(0.0243174\pi\)
\(132\) −143.807 + 196.436i −1.08945 + 1.48815i
\(133\) −8.12464 7.26533i −0.0610875 0.0546265i
\(134\) 26.5182 + 8.66933i 0.197897 + 0.0646965i
\(135\) −47.1648 + 81.6919i −0.349369 + 0.605125i
\(136\) −51.8208 + 114.713i −0.381036 + 0.843477i
\(137\) −39.1679 67.8408i −0.285897 0.495188i 0.686929 0.726724i \(-0.258958\pi\)
−0.972826 + 0.231536i \(0.925625\pi\)
\(138\) −188.211 209.791i −1.36384 1.52022i
\(139\) −149.038 −1.07222 −0.536109 0.844149i \(-0.680106\pi\)
−0.536109 + 0.844149i \(0.680106\pi\)
\(140\) 89.8478 80.8671i 0.641770 0.577622i
\(141\) 121.725i 0.863295i
\(142\) 101.115 + 112.709i 0.712081 + 0.793727i
\(143\) −50.4361 + 29.1193i −0.352700 + 0.203631i
\(144\) 27.8294 30.4618i 0.193260 0.211540i
\(145\) 13.9970 + 8.08117i 0.0965310 + 0.0557322i
\(146\) 101.035 + 33.0305i 0.692023 + 0.226236i
\(147\) −18.5617 165.699i −0.126270 1.12720i
\(148\) −3.18601 + 4.35198i −0.0215271 + 0.0294053i
\(149\) −73.8369 42.6298i −0.495550 0.286106i 0.231324 0.972877i \(-0.425694\pi\)
−0.726874 + 0.686771i \(0.759028\pi\)
\(150\) 42.3675 8.92545i 0.282450 0.0595030i
\(151\) −65.9012 114.144i −0.436432 0.755922i 0.560979 0.827830i \(-0.310425\pi\)
−0.997411 + 0.0719076i \(0.977091\pi\)
\(152\) 1.23483 + 12.3950i 0.00812389 + 0.0815460i
\(153\) 40.5751i 0.265197i
\(154\) 124.854 217.059i 0.810739 1.40948i
\(155\) 0.0723686i 0.000466894i
\(156\) 40.5518 17.8794i 0.259948 0.114612i
\(157\) −122.552 212.267i −0.780589 1.35202i −0.931599 0.363487i \(-0.881586\pi\)
0.151010 0.988532i \(1.54825\pi\)
\(158\) −45.6946 + 9.62637i −0.289206 + 0.0609264i
\(159\) −135.426 78.1883i −0.851737 0.491750i
\(160\) −138.144 1.24885i −0.863397 0.00780534i
\(161\) 216.097 + 193.241i 1.34222 + 1.20026i
\(162\) 60.6301 185.459i 0.374260 1.14481i
\(163\) 208.089 + 120.140i 1.27662 + 0.737057i 0.976225 0.216758i \(-0.0695482\pi\)
0.300395 + 0.953815i \(0.402882\pi\)
\(164\) 279.559 + 30.4052i 1.70463 + 0.185398i
\(165\) −227.550 + 131.376i −1.37909 + 0.796219i
\(166\) 136.879 + 152.573i 0.824573 + 0.919117i
\(167\) 73.1965i 0.438302i −0.975691 0.219151i \(-0.929671\pi\)
0.975691 0.219151i \(-0.0703288\pi\)
\(168\) −112.314 + 153.937i −0.668536 + 0.916290i
\(169\) −158.398 −0.937266
\(170\) −101.124 + 90.7224i −0.594850 + 0.533661i
\(171\) −2.00762 3.47730i −0.0117405 0.0203351i
\(172\) −51.8464 5.63890i −0.301433 0.0327843i
\(173\) 18.5246 32.0855i 0.107078 0.185465i −0.807507 0.589858i \(-0.799184\pi\)
0.914585 + 0.404393i \(0.132517\pi\)
\(174\) −24.2168 7.91696i −0.139177 0.0454998i
\(175\) −42.3078 + 13.9067i −0.241759 + 0.0794668i
\(176\) −272.804 + 86.4634i −1.55002 + 0.491269i
\(177\) −116.888 + 202.455i −0.660382 + 1.14382i
\(178\) 36.5136 + 173.323i 0.205132 + 0.973726i
\(179\) 205.982 118.924i 1.15074 0.664379i 0.201672 0.979453i \(-0.435363\pi\)
0.949067 + 0.315074i \(0.102029\pi\)
\(180\) 40.7469 17.9654i 0.226372 0.0998080i
\(181\) 292.553 1.61631 0.808157 0.588966i \(-0.200465\pi\)
0.808157 + 0.588966i \(0.200465\pi\)
\(182\) −39.4410 + 22.8560i −0.216709 + 0.125582i
\(183\) 326.927 1.78649
\(184\) −32.8437 329.679i −0.178499 1.79173i
\(185\) −5.04132 + 2.91061i −0.0272504 + 0.0157330i
\(186\) 0.0235169 + 0.111631i 0.000126435 + 0.000600164i
\(187\) −140.713 + 243.723i −0.752478 + 1.30333i
\(188\) −84.5238 + 115.457i −0.449595 + 0.614132i
\(189\) −31.2884 + 149.715i −0.165547 + 0.792143i
\(190\) −4.17754 + 12.7785i −0.0219871 + 0.0672552i
\(191\) −70.6135 + 122.306i −0.369704 + 0.640346i −0.989519 0.144402i \(-0.953874\pi\)
0.619815 + 0.784748i \(0.287208\pi\)
\(192\) 213.496 42.9648i 1.11196 0.223775i
\(193\) 32.9799 + 57.1229i 0.170880 + 0.295973i 0.938728 0.344659i \(-0.112006\pi\)
−0.767848 + 0.640633i \(0.778672\pi\)
\(194\) 209.713 188.141i 1.08099 0.969798i
\(195\) 47.8325 0.245295
\(196\) 97.4529 170.056i 0.497209 0.867631i
\(197\) 199.421i 1.01229i 0.862448 + 0.506145i \(0.168930\pi\)
−0.862448 + 0.506145i \(0.831070\pi\)
\(198\) 68.6652 61.6020i 0.346794 0.311121i
\(199\) 58.6230 33.8460i 0.294588 0.170080i −0.345421 0.938448i \(-0.612264\pi\)
0.640009 + 0.768367i \(0.278931\pi\)
\(200\) 46.3836 + 20.9535i 0.231918 + 0.104768i
\(201\) −41.1079 23.7337i −0.204517 0.118078i
\(202\) −21.9987 + 67.2907i −0.108904 + 0.333122i
\(203\) 25.6520 + 5.36092i 0.126365 + 0.0264085i
\(204\) 126.506 172.803i 0.620128 0.847075i
\(205\) 262.842 + 151.752i 1.28216 + 0.740254i
\(206\) −41.4964 196.976i −0.201439 0.956193i
\(207\) 53.3982 + 92.4884i 0.257962 + 0.446804i
\(208\) 50.8790 + 11.1998i 0.244611 + 0.0538454i
\(209\) 27.8495i 0.133251i
\(210\) −177.944 + 103.118i −0.847353 + 0.491040i
\(211\) 62.1464i 0.294533i 0.989097 + 0.147266i \(0.0470475\pi\)
−0.989097 + 0.147266i \(0.952953\pi\)
\(212\) −74.1600 168.200i −0.349811 0.793398i
\(213\) −128.811 223.106i −0.604744 1.04745i
\(214\) 44.0940 + 209.306i 0.206047 + 0.978066i
\(215\) −48.7463 28.1437i −0.226727 0.130901i
\(216\) 141.971 101.976i 0.657273 0.472111i
\(217\) −0.0366416 0.111473i −0.000168855 0.000513702i
\(218\) 100.051 + 32.7088i 0.458952 + 0.150040i
\(219\) −156.623 90.4261i −0.715172 0.412905i
\(220\) −307.059 33.3962i −1.39572 0.151801i
\(221\) 44.3683 25.6161i 0.200762 0.115910i
\(222\) 6.83054 6.12792i 0.0307682 0.0276033i
\(223\) 115.525i 0.518050i −0.965871 0.259025i \(-0.916599\pi\)
0.965871 0.259025i \(-0.0834012\pi\)
\(224\) −213.422 + 68.0210i −0.952779 + 0.303665i
\(225\) −16.4063 −0.0729171
\(226\) −60.6812 67.6388i −0.268501 0.299287i
\(227\) −28.2532 48.9360i −0.124463 0.215577i 0.797060 0.603901i \(-0.206388\pi\)
−0.921523 + 0.388324i \(0.873054\pi\)
\(228\) 2.29147 21.0687i 0.0100503 0.0924067i
\(229\) −59.1696 + 102.485i −0.258383 + 0.447532i −0.965809 0.259255i \(-0.916523\pi\)
0.707426 + 0.706787i \(0.249856\pi\)
\(230\) 111.113 339.879i 0.483101 1.47774i
\(231\) −283.990 + 317.579i −1.22939 + 1.37480i
\(232\) −17.4724 24.3251i −0.0753123 0.104850i
\(233\) 12.3403 21.3740i 0.0529625 0.0917337i −0.838329 0.545165i \(-0.816467\pi\)
0.891291 + 0.453431i \(0.149800\pi\)
\(234\) −16.4325 + 3.46180i −0.0702245 + 0.0147940i
\(235\) −133.745 + 77.2175i −0.569126 + 0.328585i
\(236\) −251.451 + 110.866i −1.06547 + 0.469769i
\(237\) 79.4503 0.335233
\(238\) −109.833 + 190.946i −0.461484 + 0.802294i
\(239\) −251.189 −1.05100 −0.525499 0.850794i \(-0.676121\pi\)
−0.525499 + 0.850794i \(0.676121\pi\)
\(240\) 229.548 + 50.5298i 0.956452 + 0.210541i
\(241\) 97.3782 56.2213i 0.404059 0.233283i −0.284175 0.958772i \(-0.591720\pi\)
0.688234 + 0.725489i \(0.258386\pi\)
\(242\) −389.284 + 82.0096i −1.60861 + 0.338883i
\(243\) −67.6598 + 117.190i −0.278436 + 0.482265i
\(244\) 310.093 + 227.014i 1.27087 + 0.930384i
\(245\) 170.286 125.508i 0.695046 0.512276i
\(246\) −454.755 148.668i −1.84860 0.604343i
\(247\) 2.53492 4.39061i 0.0102628 0.0177758i
\(248\) −0.0552087 + 0.122212i −0.000222616 + 0.000492792i
\(249\) −174.370 302.017i −0.700280 1.21292i
\(250\) 180.830 + 201.564i 0.723321 + 0.806256i
\(251\) −121.248 −0.483059 −0.241529 0.970394i \(-0.577649\pi\)
−0.241529 + 0.970394i \(0.577649\pi\)
\(252\) 53.6685 48.3041i 0.212970 0.191683i
\(253\) 740.735i 2.92781i
\(254\) −167.874 187.123i −0.660923 0.736704i
\(255\) 200.174 115.571i 0.784998 0.453219i
\(256\) 232.337 + 107.496i 0.907567 + 0.419907i
\(257\) −90.7377 52.3874i −0.353065 0.203842i 0.312969 0.949763i \(-0.398676\pi\)
−0.666034 + 0.745921i \(0.732010\pi\)
\(258\) 84.3381 + 27.5718i 0.326892 + 0.106867i
\(259\) −6.29172 + 7.03588i −0.0242924 + 0.0271656i
\(260\) 45.3695 + 33.2142i 0.174498 + 0.127747i
\(261\) 8.36079 + 4.82710i 0.0320337 + 0.0184946i
\(262\) −221.735 + 46.7123i −0.846315 + 0.178291i
\(263\) 52.3392 + 90.6542i 0.199008 + 0.344693i 0.948207 0.317653i \(-0.102895\pi\)
−0.749199 + 0.662345i \(0.769561\pi\)
\(264\) 484.500 48.2675i 1.83523 0.182831i
\(265\) 198.399i 0.748675i
\(266\) 0.0350972 + 21.7986i 0.000131944 + 0.0819495i
\(267\) 301.361i 1.12869i
\(268\) −22.5109 51.0564i −0.0839959 0.190509i
\(269\) 152.466 + 264.079i 0.566789 + 0.981707i 0.996881 + 0.0789222i \(0.0251479\pi\)
−0.430092 + 0.902785i \(0.641519\pi\)
\(270\) 184.607 38.8908i 0.683731 0.144040i
\(271\) 88.8942 + 51.3231i 0.328023 + 0.189384i 0.654963 0.755661i \(-0.272684\pi\)
−0.326940 + 0.945045i \(0.606018\pi\)
\(272\) 239.984 76.0613i 0.882295 0.279637i
\(273\) 73.6790 24.2185i 0.269886 0.0887125i
\(274\) −48.6835 + 148.916i −0.177677 + 0.543488i
\(275\) 98.5482 + 56.8968i 0.358357 + 0.206898i
\(276\) −60.9479 + 560.381i −0.220826 + 2.03036i
\(277\) −14.4235 + 8.32739i −0.0520703 + 0.0300628i −0.525809 0.850603i \(-0.676237\pi\)
0.473739 + 0.880665i \(0.342904\pi\)
\(278\) 199.051 + 221.874i 0.716012 + 0.798109i
\(279\) 0.0432277i 0.000154938i
\(280\) −240.386 25.7532i −0.858520 0.0919756i
\(281\) 75.8291 0.269855 0.134927 0.990856i \(-0.456920\pi\)
0.134927 + 0.990856i \(0.456920\pi\)
\(282\) 181.212 162.572i 0.642596 0.576496i
\(283\) −43.6656 75.6311i −0.154296 0.267248i 0.778507 0.627636i \(-0.215977\pi\)
−0.932802 + 0.360389i \(0.882644\pi\)
\(284\) 32.7441 301.063i 0.115296 1.06008i
\(285\) 11.4367 19.8089i 0.0401287 0.0695050i
\(286\) 110.711 + 36.1936i 0.387102 + 0.126551i
\(287\) 481.706 + 100.670i 1.67842 + 0.350767i
\(288\) −82.5169 0.745975i −0.286517 0.00259019i
\(289\) −20.7152 + 35.8798i −0.0716789 + 0.124151i
\(290\) −6.66350 31.6304i −0.0229776 0.109070i
\(291\) −415.124 + 239.672i −1.42654 + 0.823614i
\(292\) −85.7673 194.527i −0.293724 0.666187i
\(293\) −27.5057 −0.0938760 −0.0469380 0.998898i \(-0.514946\pi\)
−0.0469380 + 0.998898i \(0.514946\pi\)
\(294\) −221.886 + 248.935i −0.754715 + 0.846719i
\(295\) −296.597 −1.00541
\(296\) 10.7340 1.06935i 0.0362634 0.00361268i
\(297\) 338.452 195.406i 1.13957 0.657931i
\(298\) 35.1513 + 166.857i 0.117957 + 0.559922i
\(299\) −67.4232 + 116.780i −0.225496 + 0.390570i
\(300\) −69.8722 51.1522i −0.232907 0.170507i
\(301\) −89.3363 18.6701i −0.296798 0.0620269i
\(302\) −81.9115 + 250.555i −0.271230 + 0.829654i
\(303\) 60.2248 104.312i 0.198762 0.344266i
\(304\) 16.8033 18.3927i 0.0552740 0.0605023i
\(305\) 207.390 + 359.211i 0.679968 + 1.17774i
\(306\) −60.4044 + 54.1909i −0.197400 + 0.177095i
\(307\) −247.996 −0.807805 −0.403902 0.914802i \(-0.632346\pi\)
−0.403902 + 0.914802i \(0.632346\pi\)
\(308\) −489.889 + 104.028i −1.59055 + 0.337752i
\(309\) 342.486i 1.10837i
\(310\) −0.107736 + 0.0966534i −0.000347534 + 0.000311785i
\(311\) 378.484 218.518i 1.21699 0.702630i 0.252717 0.967540i \(-0.418676\pi\)
0.964273 + 0.264910i \(0.0853424\pi\)
\(312\) −80.7771 36.4905i −0.258901 0.116957i
\(313\) −71.7330 41.4151i −0.229179 0.132317i 0.381014 0.924569i \(-0.375575\pi\)
−0.610193 + 0.792253i \(0.708908\pi\)
\(314\) −152.326 + 465.943i −0.485114 + 1.48389i
\(315\) 74.0335 24.3350i 0.235027 0.0772540i
\(316\) 75.3593 + 55.1691i 0.238479 + 0.174586i
\(317\) 211.775 + 122.268i 0.668059 + 0.385704i 0.795341 0.606162i \(-0.207292\pi\)
−0.127282 + 0.991867i \(0.540625\pi\)
\(318\) 64.4718 + 306.036i 0.202742 + 0.962377i
\(319\) −33.4806 57.9900i −0.104955 0.181787i
\(320\) 182.641 + 207.323i 0.570755 + 0.647885i
\(321\) 363.925i 1.13372i
\(322\) −0.933506 579.793i −0.00289909 1.80060i
\(323\) 24.4991i 0.0758485i
\(324\) −357.069 + 157.433i −1.10207 + 0.485904i
\(325\) −10.3577 17.9401i −0.0318699 0.0552004i
\(326\) −99.0643 470.240i −0.303878 1.44245i
\(327\) −155.097 89.5456i −0.474304 0.273840i
\(328\) −328.106 456.789i −1.00032 1.39265i
\(329\) −166.917 + 186.660i −0.507348 + 0.567355i
\(330\) 499.490 + 163.293i 1.51361 + 0.494828i
\(331\) 66.2919 + 38.2736i 0.200278 + 0.115630i 0.596785 0.802401i \(-0.296445\pi\)
−0.396507 + 0.918032i \(0.629778\pi\)
\(332\) 44.3253 407.546i 0.133510 1.22755i
\(333\) −3.01132 + 1.73858i −0.00904299 + 0.00522097i
\(334\) −108.968 + 97.7592i −0.326252 + 0.292692i
\(335\) 60.2230i 0.179770i
\(336\) 379.170 38.3909i 1.12848 0.114259i
\(337\) −38.2520 −0.113507 −0.0567537 0.998388i \(-0.518075\pi\)
−0.0567537 + 0.998388i \(0.518075\pi\)
\(338\) 211.552 + 235.808i 0.625893 + 0.697657i
\(339\) 77.3015 + 133.890i 0.228028 + 0.394956i
\(340\) 270.118 + 29.3785i 0.794465 + 0.0864072i
\(341\) −0.149913 + 0.259656i −0.000439627 + 0.000761456i
\(342\) −2.49536 + 7.63294i −0.00729637 + 0.0223185i
\(343\) 198.754 279.546i 0.579459 0.815002i
\(344\) 60.8500 + 84.7153i 0.176889 + 0.246265i
\(345\) −304.190 + 526.873i −0.881711 + 1.52717i
\(346\) −72.5068 + 15.2748i −0.209557 + 0.0441469i
\(347\) 208.395 120.317i 0.600561 0.346734i −0.168701 0.985667i \(-0.553957\pi\)
0.769262 + 0.638933i \(0.220624\pi\)
\(348\) 20.5573 + 46.6254i 0.0590727 + 0.133981i
\(349\) −430.367 −1.23314 −0.616572 0.787298i \(-0.711479\pi\)
−0.616572 + 0.787298i \(0.711479\pi\)
\(350\) 77.2081 + 44.4105i 0.220594 + 0.126887i
\(351\) −71.1449 −0.202692
\(352\) 493.068 + 290.648i 1.40076 + 0.825703i
\(353\) −265.950 + 153.546i −0.753399 + 0.434975i −0.826921 0.562318i \(-0.809910\pi\)
0.0735214 + 0.997294i \(0.476576\pi\)
\(354\) 457.509 96.3822i 1.29240 0.272266i
\(355\) 163.425 283.061i 0.460353 0.797354i
\(356\) 209.261 285.844i 0.587811 0.802931i
\(357\) 249.824 279.372i 0.699787 0.782555i
\(358\) −452.147 147.816i −1.26298 0.412893i
\(359\) −230.880 + 399.896i −0.643120 + 1.11392i 0.341613 + 0.939841i \(0.389027\pi\)
−0.984732 + 0.174075i \(0.944306\pi\)
\(360\) −81.1657 36.6661i −0.225460 0.101850i
\(361\) 179.288 + 310.536i 0.496642 + 0.860209i
\(362\) −390.726 435.526i −1.07935 1.20311i
\(363\) 676.858 1.86462
\(364\) 86.7022 + 28.1902i 0.238193 + 0.0774457i
\(365\) 229.452i 0.628635i
\(366\) −436.635 486.699i −1.19299 1.32978i
\(367\) −542.949 + 313.471i −1.47942 + 0.854146i −0.999729 0.0232895i \(-0.992586\pi\)
−0.479695 + 0.877435i \(0.659253\pi\)
\(368\) −446.930 + 489.205i −1.21448 + 1.32936i
\(369\) 157.003 + 90.6457i 0.425482 + 0.245652i
\(370\) 11.0661 + 3.61772i 0.0299083 + 0.00977762i
\(371\) −100.453 305.605i −0.270763 0.823732i
\(372\) 0.134777 0.184100i 0.000362303 0.000494894i
\(373\) −357.317 206.297i −0.957953 0.553075i −0.0624108 0.998051i \(-0.519879\pi\)
−0.895543 + 0.444976i \(0.853212\pi\)
\(374\) 550.765 116.028i 1.47263 0.310236i
\(375\) −230.359 398.993i −0.614290 1.06398i
\(376\) 284.769 28.3697i 0.757364 0.0754512i
\(377\) 12.1899i 0.0323339i
\(378\) 264.670 153.376i 0.700184 0.405756i
\(379\) 327.118i 0.863107i 0.902087 + 0.431554i \(0.142034\pi\)
−0.902087 + 0.431554i \(0.857966\pi\)
\(380\) 24.6028 10.8475i 0.0647443 0.0285459i
\(381\) 213.854 + 370.407i 0.561298 + 0.972196i
\(382\) 276.387 58.2259i 0.723527 0.152424i
\(383\) −215.523 124.432i −0.562724 0.324889i 0.191514 0.981490i \(-0.438660\pi\)
−0.754238 + 0.656601i \(0.771994\pi\)
\(384\) −349.102 260.451i −0.909119 0.678257i
\(385\) −529.091 110.573i −1.37426 0.287203i
\(386\) 40.9922 125.389i 0.106197 0.324842i
\(387\) −29.1175 16.8110i −0.0752390 0.0434392i
\(388\) −560.173 60.9253i −1.44375 0.157024i
\(389\) 326.728 188.637i 0.839918 0.484927i −0.0173181 0.999850i \(-0.505513\pi\)
0.857236 + 0.514923i \(0.172179\pi\)
\(390\) −63.8837 71.2086i −0.163804 0.182586i
\(391\) 651.620i 1.66655i
\(392\) −383.318 + 82.0428i −0.977853 + 0.209293i
\(393\) 385.535 0.981005
\(394\) 296.880 266.341i 0.753502 0.675994i
\(395\) 50.4003 + 87.2958i 0.127596 + 0.221002i
\(396\) −183.415 19.9485i −0.463168 0.0503749i
\(397\) −335.874 + 581.752i −0.846031 + 1.46537i 0.0386913 + 0.999251i \(0.487681\pi\)
−0.884723 + 0.466118i \(0.845652\pi\)
\(398\) −128.682 42.0687i −0.323322 0.105700i
\(399\) 7.58692 36.3034i 0.0190148 0.0909859i
\(400\) −30.7550 97.0365i −0.0768876 0.242591i
\(401\) 235.200 407.378i 0.586534 1.01591i −0.408149 0.912915i \(-0.633826\pi\)
0.994682 0.102991i \(-0.0328411\pi\)
\(402\) 19.5701 + 92.8957i 0.0486819 + 0.231084i
\(403\) 0.0472689 0.0272907i 0.000117293 6.77189e-5i
\(404\) 129.557 57.1220i 0.320685 0.141391i
\(405\) −421.177 −1.03994
\(406\) −26.2792 45.3482i −0.0647272 0.111695i
\(407\) 24.1175 0.0592567
\(408\) −426.211 + 42.4606i −1.04464 + 0.104070i
\(409\) −57.7400 + 33.3362i −0.141174 + 0.0815067i −0.568923 0.822391i \(-0.692640\pi\)
0.427750 + 0.903897i \(0.359307\pi\)
\(410\) −125.130 593.971i −0.305196 1.44871i
\(411\) 133.279 230.846i 0.324279 0.561669i
\(412\) −237.818 + 324.851i −0.577227 + 0.788474i
\(413\) −456.864 + 150.172i −1.10621 + 0.363614i
\(414\) 66.3709 203.019i 0.160316 0.490384i
\(415\) 221.227 383.177i 0.533077 0.923317i
\(416\) −51.2793 90.7021i −0.123267 0.218034i
\(417\) −253.571 439.197i −0.608083 1.05323i
\(418\) 41.4598 37.1950i 0.0991860 0.0889833i
\(419\) 437.380 1.04387 0.521933 0.852986i \(-0.325211\pi\)
0.521933 + 0.852986i \(0.325211\pi\)
\(420\) 391.170 + 127.185i 0.931358 + 0.302820i
\(421\) 703.800i 1.67173i 0.548933 + 0.835867i \(0.315034\pi\)
−0.548933 + 0.835867i \(0.684966\pi\)
\(422\) 92.5178 83.0010i 0.219236 0.196685i
\(423\) −79.8893 + 46.1241i −0.188864 + 0.109040i
\(424\) −151.355 + 335.046i −0.356969 + 0.790203i
\(425\) −86.6923 50.0518i −0.203982 0.117769i
\(426\) −160.104 + 489.736i −0.375832 + 1.14961i
\(427\) 501.330 + 448.306i 1.17407 + 1.04990i
\(428\) 252.705 345.186i 0.590431 0.806510i
\(429\) −171.622 99.0858i −0.400051 0.230969i
\(430\) 23.2065 + 110.157i 0.0539686 + 0.256179i
\(431\) 274.869 + 476.087i 0.637747 + 1.10461i 0.985926 + 0.167183i \(0.0534670\pi\)
−0.348178 + 0.937428i \(0.613200\pi\)
\(432\) −341.425 75.1568i −0.790335 0.173974i
\(433\) 355.012i 0.819890i 0.912110 + 0.409945i \(0.134452\pi\)
−0.912110 + 0.409945i \(0.865548\pi\)
\(434\) −0.117014 + 0.203429i −0.000269616 + 0.000468731i
\(435\) 54.9965i 0.126429i
\(436\) −84.9321 192.632i −0.194798 0.441817i
\(437\) 32.2416 + 55.8441i 0.0737794 + 0.127790i
\(438\) 74.5628 + 353.936i 0.170235 + 0.808073i
\(439\) 477.032 + 275.415i 1.08663 + 0.627369i 0.932678 0.360709i \(-0.117465\pi\)
0.153956 + 0.988078i \(0.450799\pi\)
\(440\) 360.382 + 501.724i 0.819050 + 1.14028i
\(441\) 101.717 74.9692i 0.230650 0.169998i
\(442\) −97.3919 31.8393i −0.220344 0.0720347i
\(443\) 234.027 + 135.116i 0.528278 + 0.305001i 0.740315 0.672260i \(-0.234676\pi\)
−0.212037 + 0.977262i \(0.568010\pi\)
\(444\) −18.2454 1.98439i −0.0410932 0.00446936i
\(445\) 331.120 191.172i 0.744089 0.429600i
\(446\) −171.983 + 154.292i −0.385612 + 0.345947i
\(447\) 290.117i 0.649032i
\(448\) 386.304 + 226.876i 0.862287 + 0.506421i
\(449\) 455.397 1.01425 0.507124 0.861873i \(-0.330709\pi\)
0.507124 + 0.861873i \(0.330709\pi\)
\(450\) 21.9118 + 24.4242i 0.0486930 + 0.0542761i
\(451\) −628.714 1088.96i −1.39404 2.41456i
\(452\) −19.6503 + 180.673i −0.0434741 + 0.399719i
\(453\) 224.246 388.405i 0.495024 0.857406i
\(454\) −35.1171 + 107.418i −0.0773505 + 0.236604i
\(455\) 73.3492 + 65.5914i 0.161207 + 0.144157i
\(456\) −34.4256 + 24.7275i −0.0754947 + 0.0542269i
\(457\) 84.3172 146.042i 0.184501 0.319566i −0.758907 0.651199i \(-0.774266\pi\)
0.943408 + 0.331633i \(0.107600\pi\)
\(458\) 231.595 48.7896i 0.505666 0.106528i
\(459\) −297.735 + 171.897i −0.648659 + 0.374504i
\(460\) −654.380 + 288.518i −1.42257 + 0.627213i
\(461\) −265.062 −0.574971 −0.287485 0.957785i \(-0.592819\pi\)
−0.287485 + 0.957785i \(0.592819\pi\)
\(462\) 852.070 1.37189i 1.84431 0.00296946i
\(463\) 97.4735 0.210526 0.105263 0.994444i \(-0.466432\pi\)
0.105263 + 0.994444i \(0.466432\pi\)
\(464\) −12.8773 + 58.4993i −0.0277528 + 0.126076i
\(465\) 0.213261 0.123126i 0.000458626 0.000264788i
\(466\) −48.3009 + 10.1754i −0.103650 + 0.0218357i
\(467\) 37.0997 64.2586i 0.0794427 0.137599i −0.823567 0.567219i \(-0.808019\pi\)
0.903010 + 0.429620i \(0.141353\pi\)
\(468\) 27.1005 + 19.8398i 0.0579070 + 0.0423926i
\(469\) −30.4921 92.7648i −0.0650150 0.197793i
\(470\) 293.580 + 95.9770i 0.624638 + 0.204206i
\(471\) 417.016 722.293i 0.885385 1.53353i
\(472\) 500.877 + 226.268i 1.06118 + 0.479382i
\(473\) 116.600 + 201.958i 0.246512 + 0.426972i
\(474\) −106.112 118.278i −0.223864 0.249532i
\(475\) −9.90608 −0.0208549
\(476\) 430.952 91.5126i 0.905362 0.192253i
\(477\) 118.509i 0.248447i
\(478\) 335.480 + 373.946i 0.701842 + 0.782314i
\(479\) −475.220 + 274.368i −0.992108 + 0.572794i −0.905904 0.423484i \(-0.860807\pi\)
−0.0862043 + 0.996277i \(0.527474\pi\)
\(480\) −231.354 409.216i −0.481988 0.852534i
\(481\) −3.80224 2.19522i −0.00790486 0.00456387i
\(482\) −213.753 69.8799i −0.443470 0.144979i
\(483\) −201.795 + 965.588i −0.417795 + 1.99915i
\(484\) 642.006 + 470.001i 1.32646 + 0.971076i
\(485\) −526.678 304.078i −1.08593 0.626964i
\(486\) 264.827 55.7904i 0.544911 0.114795i
\(487\) −283.938 491.795i −0.583034 1.00985i −0.995117 0.0986990i \(-0.968532\pi\)
0.412083 0.911146i \(-0.364801\pi\)
\(488\) −76.1951 764.831i −0.156137 1.56728i
\(489\) 817.617i 1.67202i
\(490\) −414.274 85.8818i −0.845456 0.175269i
\(491\) 78.8005i 0.160490i −0.996775 0.0802449i \(-0.974430\pi\)
0.996775 0.0802449i \(-0.0255702\pi\)
\(492\) 386.035 + 875.555i 0.784623 + 1.77958i
\(493\) 29.4527 + 51.0135i 0.0597417 + 0.103476i
\(494\) −9.92190 + 2.09022i −0.0200848 + 0.00423122i
\(495\) −172.447 99.5626i −0.348379 0.201136i
\(496\) 0.255674 0.0810339i 0.000515471 0.000163375i
\(497\) 108.414 518.759i 0.218136 1.04378i
\(498\) −216.732 + 662.951i −0.435204 + 1.33123i
\(499\) −290.932 167.970i −0.583030 0.336612i 0.179307 0.983793i \(-0.442615\pi\)
−0.762337 + 0.647181i \(0.775948\pi\)
\(500\) 58.5579 538.406i 0.117116 1.07681i
\(501\) 215.701 124.535i 0.430541 0.248573i
\(502\) 161.935 + 180.502i 0.322580 + 0.359566i
\(503\) 274.052i 0.544836i −0.962179 0.272418i \(-0.912177\pi\)
0.962179 0.272418i \(-0.0878233\pi\)
\(504\) −143.589 15.3831i −0.284898 0.0305220i
\(505\) 152.817 0.302609
\(506\) −1102.74 + 989.304i −2.17932 + 1.95515i
\(507\) −269.495 466.779i −0.531548 0.920669i
\(508\) −54.3625 + 499.832i −0.107013 + 0.983921i
\(509\) 168.009 291.000i 0.330076 0.571709i −0.652450 0.757831i \(-0.726259\pi\)
0.982526 + 0.186123i \(0.0595923\pi\)
\(510\) −439.398 143.648i −0.861566 0.281663i
\(511\) −116.176 353.437i −0.227350 0.691658i
\(512\) −150.273 489.451i −0.293501 0.955959i
\(513\) −17.0106 + 29.4633i −0.0331591 + 0.0574333i
\(514\) 43.1972 + 205.049i 0.0840412 + 0.398928i
\(515\) −376.306 + 217.260i −0.730691 + 0.421865i
\(516\) −71.5933 162.379i −0.138747 0.314688i
\(517\) 639.829 1.23758
\(518\) 18.8774 0.0303939i 0.0364429 5.86755e-5i
\(519\) 126.069 0.242908
\(520\) −11.1480 111.902i −0.0214385 0.215196i
\(521\) −547.572 + 316.141i −1.05100 + 0.606796i −0.922930 0.384969i \(-0.874212\pi\)
−0.128072 + 0.991765i \(0.540879\pi\)
\(522\) −3.98029 18.8937i −0.00762508 0.0361948i
\(523\) 389.623 674.847i 0.744977 1.29034i −0.205229 0.978714i \(-0.565794\pi\)
0.950206 0.311624i \(-0.100873\pi\)
\(524\) 365.683 + 267.710i 0.697869 + 0.510897i
\(525\) −112.963 101.015i −0.215167 0.192410i
\(526\) 65.0547 198.993i 0.123678 0.378314i
\(527\) 0.131877 0.228418i 0.000250242 0.000433431i
\(528\) −718.940 656.813i −1.36163 1.24396i
\(529\) −593.054 1027.20i −1.12109 1.94178i
\(530\) −295.358 + 264.976i −0.557279 + 0.499955i
\(531\) −177.165 −0.333644
\(532\) 32.4048 29.1658i 0.0609113 0.0548230i
\(533\) 228.907i 0.429470i
\(534\) −448.638 + 402.489i −0.840146 + 0.753725i
\(535\) 399.862 230.861i 0.747406 0.431515i
\(536\) −45.9431 + 101.702i −0.0857146 + 0.189742i
\(537\) 700.908 + 404.669i 1.30523 + 0.753574i
\(538\) 189.507 579.674i 0.352243 1.07746i
\(539\) −870.974 + 97.5673i −1.61591 + 0.181015i
\(540\) −304.453 222.885i −0.563802 0.412750i
\(541\) 583.617 + 336.952i 1.07878 + 0.622831i 0.930566 0.366125i \(-0.119316\pi\)
0.148209 + 0.988956i \(0.452649\pi\)
\(542\) −42.3195 200.883i −0.0780803 0.370633i
\(543\) 497.743 + 862.117i 0.916655 + 1.58769i
\(544\) −433.749 255.681i −0.797333 0.470002i
\(545\) 227.217i 0.416913i
\(546\) −134.458 77.3409i −0.246260 0.141650i
\(547\) 52.5329i 0.0960382i 0.998846 + 0.0480191i \(0.0152908\pi\)
−0.998846 + 0.0480191i \(0.984709\pi\)
\(548\) 286.712 126.412i 0.523198 0.230679i
\(549\) 123.880 + 214.566i 0.225646 + 0.390831i
\(550\) −46.9155 222.699i −0.0853009 0.404907i
\(551\) 5.04821 + 2.91458i 0.00916190 + 0.00528963i
\(552\) 915.643 657.695i 1.65877 1.19148i
\(553\) 121.834 + 108.948i 0.220314 + 0.197012i
\(554\) 31.6606 + 10.3505i 0.0571491 + 0.0186832i
\(555\) −17.1544 9.90409i −0.0309088 0.0178452i
\(556\) 64.4585 592.658i 0.115933 1.06593i
\(557\) 678.123 391.515i 1.21746 0.702899i 0.253083 0.967445i \(-0.418555\pi\)
0.964373 + 0.264546i \(0.0852220\pi\)
\(558\) −0.0643534 + 0.0577337i −0.000115329 + 0.000103465i
\(559\) 42.4528i 0.0759441i
\(560\) 282.713 + 392.259i 0.504845 + 0.700462i
\(561\) −957.628 −1.70700
\(562\) −101.275 112.887i −0.180205 0.200867i
\(563\) 446.202 + 772.844i 0.792543 + 1.37272i 0.924388 + 0.381454i \(0.124577\pi\)
−0.131845 + 0.991270i \(0.542090\pi\)
\(564\) −484.044 52.6454i −0.858234 0.0933429i
\(565\) −98.0743 + 169.870i −0.173583 + 0.300654i
\(566\) −54.2739 + 166.016i −0.0958903 + 0.293315i
\(567\) −648.763 + 213.250i −1.14420 + 0.376102i
\(568\) −491.926 + 353.345i −0.866067 + 0.622085i
\(569\) 148.722 257.593i 0.261373 0.452712i −0.705234 0.708975i \(-0.749158\pi\)
0.966607 + 0.256263i \(0.0824912\pi\)
\(570\) −44.7642 + 9.43036i −0.0785337 + 0.0165445i
\(571\) −218.885 + 126.373i −0.383335 + 0.221319i −0.679268 0.733890i \(-0.737703\pi\)
0.295933 + 0.955209i \(0.404369\pi\)
\(572\) −93.9808 213.155i −0.164302 0.372649i
\(573\) −480.561 −0.838676
\(574\) −493.484 851.570i −0.859728 1.48357i
\(575\) 263.479 0.458225
\(576\) 109.097 + 123.840i 0.189404 + 0.215000i
\(577\) 764.454 441.358i 1.32488 0.764918i 0.340375 0.940290i \(-0.389446\pi\)
0.984502 + 0.175371i \(0.0561126\pi\)
\(578\) 81.0811 17.0812i 0.140279 0.0295522i
\(579\) −112.223 + 194.375i −0.193821 + 0.335709i
\(580\) −38.1888 + 52.1647i −0.0658428 + 0.0899391i
\(581\) 146.759 702.239i 0.252597 1.20867i
\(582\) 911.229 + 297.899i 1.56568 + 0.511853i
\(583\) −410.987 + 711.850i −0.704951 + 1.22101i
\(584\) −175.045 + 387.487i −0.299734 + 0.663504i
\(585\) 18.1248 + 31.3930i 0.0309825 + 0.0536633i
\(586\) 36.7358 + 40.9479i 0.0626890 + 0.0698769i
\(587\) −66.7814 −0.113767 −0.0568836 0.998381i \(-0.518116\pi\)
−0.0568836 + 0.998381i \(0.518116\pi\)
\(588\) 666.937 2.14763i 1.13425 0.00365244i
\(589\) 0.0261007i 4.43136e-5i
\(590\) 396.126 + 441.545i 0.671400 + 0.748382i
\(591\) −587.670 + 339.291i −0.994365 + 0.574097i
\(592\) −15.9279 14.5515i −0.0269053 0.0245803i
\(593\) −311.911 180.082i −0.525989 0.303680i 0.213393 0.976967i \(-0.431549\pi\)
−0.739381 + 0.673287i \(0.764882\pi\)
\(594\) −742.929 242.878i −1.25072 0.408886i
\(595\) 465.439 + 97.2704i 0.782250 + 0.163480i
\(596\) 201.454 275.179i 0.338009 0.461710i
\(597\) 199.480 + 115.170i 0.334137 + 0.192914i
\(598\) 263.900 55.5952i 0.441305 0.0929686i
\(599\) 99.0219 + 171.511i 0.165312 + 0.286329i 0.936766 0.349956i \(-0.113804\pi\)
−0.771454 + 0.636285i \(0.780470\pi\)
\(600\) 17.1688 + 172.337i 0.0286146 + 0.287228i
\(601\) 373.907i 0.622141i 0.950387 + 0.311071i \(0.100688\pi\)
−0.950387 + 0.311071i \(0.899312\pi\)
\(602\) 91.5207 + 157.931i 0.152028 + 0.262343i
\(603\) 35.9728i 0.0596565i
\(604\) 482.402 212.692i 0.798679 0.352140i
\(605\) 429.373 + 743.696i 0.709708 + 1.22925i
\(606\) −235.725 + 49.6597i −0.388986 + 0.0819466i
\(607\) 200.164 + 115.565i 0.329760 + 0.190387i 0.655735 0.754992i \(-0.272359\pi\)
−0.325975 + 0.945379i \(0.605692\pi\)
\(608\) −49.8234 0.450416i −0.0819463 0.000740816i
\(609\) 27.8458 + 84.7142i 0.0457238 + 0.139104i
\(610\) 257.775 788.495i 0.422581 1.29261i
\(611\) −100.872 58.2386i −0.165094 0.0953168i
\(612\) 161.349 + 17.5486i 0.263642 + 0.0286741i
\(613\) −444.718 + 256.758i −0.725479 + 0.418855i −0.816766 0.576969i \(-0.804235\pi\)
0.0912873 + 0.995825i \(0.470902\pi\)
\(614\) 331.217 + 369.193i 0.539441 + 0.601292i
\(615\) 1032.75i 1.67927i
\(616\) 809.149 + 590.364i 1.31355 + 0.958384i
\(617\) −1119.01 −1.81363 −0.906815 0.421529i \(-0.861493\pi\)
−0.906815 + 0.421529i \(0.861493\pi\)
\(618\) 509.862 457.415i 0.825019 0.740154i
\(619\) 64.1019 + 111.028i 0.103557 + 0.179366i 0.913148 0.407629i \(-0.133644\pi\)
−0.809591 + 0.586995i \(0.800311\pi\)
\(620\) 0.287777 + 0.0312991i 0.000464157 + 5.04824e-5i
\(621\) 452.445 783.658i 0.728575 1.26193i
\(622\) −830.802 271.605i −1.33569 0.436665i
\(623\) 413.248 462.125i 0.663319 0.741774i
\(624\) 53.5599 + 168.989i 0.0858332 + 0.270816i
\(625\) 212.735 368.469i 0.340377 0.589550i
\(626\) 34.1497 + 162.102i 0.0545522 + 0.258949i
\(627\) −82.0690 + 47.3826i −0.130892 + 0.0755703i
\(628\) 897.094 395.531i 1.42849 0.629827i
\(629\) −21.2160 −0.0337297
\(630\) −135.105 77.7130i −0.214452 0.123354i
\(631\) 313.995 0.497615 0.248808 0.968553i \(-0.419961\pi\)
0.248808 + 0.968553i \(0.419961\pi\)
\(632\) −18.5170 185.870i −0.0292991 0.294098i
\(633\) −183.138 + 105.735i −0.289317 + 0.167037i
\(634\) −100.819 478.569i −0.159020 0.754840i
\(635\) −271.322 + 469.944i −0.427279 + 0.740070i
\(636\) 369.491 504.713i 0.580961 0.793573i
\(637\) 146.194 + 63.8959i 0.229504 + 0.100307i
\(638\) −41.6145 + 127.293i −0.0652264 + 0.199518i
\(639\) 97.6183 169.080i 0.152767 0.264601i
\(640\) 64.7127 548.795i 0.101114 0.857492i
\(641\) 115.594 + 200.215i 0.180334 + 0.312348i 0.941994 0.335629i \(-0.108949\pi\)
−0.761660 + 0.647977i \(0.775615\pi\)
\(642\) −541.778 + 486.048i −0.843891 + 0.757085i
\(643\) 637.869 0.992020 0.496010 0.868317i \(-0.334798\pi\)
0.496010 + 0.868317i \(0.334798\pi\)
\(644\) −861.896 + 775.745i −1.33835 + 1.20457i
\(645\) 191.532i 0.296949i
\(646\) −36.4719 + 32.7203i −0.0564581 + 0.0506505i
\(647\) −586.461 + 338.594i −0.906432 + 0.523329i −0.879281 0.476303i \(-0.841977\pi\)
−0.0271505 + 0.999631i \(0.508643\pi\)
\(648\) 711.263 + 321.309i 1.09763 + 0.495847i
\(649\) 1064.18 + 614.405i 1.63972 + 0.946695i
\(650\) −12.8741 + 39.3799i −0.0198063 + 0.0605845i
\(651\) 0.266157 0.297636i 0.000408843 0.000457199i
\(652\) −567.742 + 775.517i −0.870769 + 1.18944i
\(653\) −916.022 528.865i −1.40279 0.809901i −0.408112 0.912932i \(-0.633813\pi\)
−0.994678 + 0.103031i \(0.967146\pi\)
\(654\) 73.8367 + 350.489i 0.112900 + 0.535916i
\(655\) 244.569 + 423.606i 0.373388 + 0.646726i
\(656\) −241.816 + 1098.53i −0.368622 + 1.67459i
\(657\) 137.058i 0.208612i
\(658\) 500.812 0.806341i 0.761112 0.00122544i
\(659\) 644.502i 0.978000i −0.872284 0.489000i \(-0.837362\pi\)
0.872284 0.489000i \(-0.162638\pi\)
\(660\) −424.009 961.684i −0.642438 1.45710i
\(661\) 560.069 + 970.068i 0.847306 + 1.46758i 0.883604 + 0.468236i \(0.155110\pi\)
−0.0362979 + 0.999341i \(0.511557\pi\)
\(662\) −31.5593 149.806i −0.0476727 0.226294i
\(663\) 150.975 + 87.1652i 0.227714 + 0.131471i
\(664\) −665.916 + 478.319i −1.00289 + 0.720360i
\(665\) 44.7011 14.6934i 0.0672197 0.0220953i
\(666\) 6.61007 + 2.16096i 0.00992503 + 0.00324469i
\(667\) −134.271 77.5214i −0.201306 0.116224i
\(668\) 291.070 + 31.6572i 0.435733 + 0.0473910i
\(669\) 340.438 196.552i 0.508876 0.293800i
\(670\) −89.6544 + 80.4322i −0.133813 + 0.120048i
\(671\) 1718.45i 2.56103i
\(672\) −563.562 513.200i −0.838634 0.763690i
\(673\) −307.811 −0.457371 −0.228686 0.973500i \(-0.573443\pi\)
−0.228686 + 0.973500i \(0.573443\pi\)
\(674\) 51.0883 + 56.9460i 0.0757987 + 0.0844897i
\(675\) 69.5058 + 120.388i 0.102972 + 0.178352i
\(676\) 68.5065 629.878i 0.101341 0.931772i
\(677\) −507.773 + 879.488i −0.750033 + 1.29910i 0.197773 + 0.980248i \(0.436629\pi\)
−0.947806 + 0.318848i \(0.896704\pi\)
\(678\) 96.0814 293.899i 0.141713 0.433479i
\(679\) −965.231 201.720i −1.42155 0.297084i
\(680\) −317.026 441.364i −0.466215 0.649064i
\(681\) 96.1388 166.517i 0.141173 0.244519i
\(682\) 0.586772 0.123614i 0.000860369 0.000181252i
\(683\) −840.220 + 485.102i −1.23019 + 0.710251i −0.967070 0.254512i \(-0.918085\pi\)
−0.263121 + 0.964763i \(0.584752\pi\)
\(684\) 14.6959 6.47948i 0.0214853 0.00947293i
\(685\) 338.188 0.493706
\(686\) −681.612 + 77.4663i −0.993604 + 0.112925i
\(687\) −402.680 −0.586143
\(688\) 44.8467 203.731i 0.0651842 0.296121i
\(689\) 129.588 74.8177i 0.188081 0.108589i
\(690\) 1190.63 250.827i 1.72555 0.363517i
\(691\) 274.581 475.588i 0.397367 0.688260i −0.596033 0.802960i \(-0.703257\pi\)
0.993400 + 0.114700i \(0.0365906\pi\)
\(692\) 119.578 + 87.5407i 0.172800 + 0.126504i
\(693\) −316.041 66.0483i −0.456047 0.0953078i
\(694\) −457.442 149.547i −0.659138 0.215485i
\(695\) 321.711 557.221i 0.462894 0.801756i
\(696\) 41.9559 92.8754i 0.0602814 0.133442i
\(697\) 553.076 + 957.956i 0.793510 + 1.37440i
\(698\) 574.786 + 640.691i 0.823476 + 0.917895i
\(699\) 83.9818 0.120146
\(700\) −37.0027 174.254i −0.0528610 0.248934i
\(701\) 452.665i 0.645742i 0.946443 + 0.322871i \(0.104648\pi\)
−0.946443 + 0.322871i \(0.895352\pi\)
\(702\) 95.0191 + 105.914i 0.135355 + 0.150874i
\(703\) −1.81822 + 1.04975i −0.00258637 + 0.00149324i
\(704\) −225.839 1122.21i −0.320794 1.59406i
\(705\) −455.100 262.752i −0.645533 0.372698i
\(706\) 583.781 + 190.849i 0.826885 + 0.270325i
\(707\) 235.393 77.3744i 0.332946 0.109440i
\(708\) −754.520 552.371i −1.06571 0.780185i
\(709\) −609.174 351.707i −0.859202 0.496060i 0.00454321 0.999990i \(-0.498554\pi\)
−0.863745 + 0.503929i \(0.831887\pi\)
\(710\) −639.660 + 134.756i −0.900930 + 0.189797i
\(711\) 30.1054 + 52.1442i 0.0423424 + 0.0733392i
\(712\) −705.020 + 70.2365i −0.990197 + 0.0986468i
\(713\) 0.694220i 0.000973661i
\(714\) −749.561 + 1.20684i −1.04981 + 0.00169026i
\(715\) 251.425i 0.351644i
\(716\) 383.820 + 870.533i 0.536062 + 1.21583i
\(717\) −427.367 740.221i −0.596049 1.03239i
\(718\) 903.684 190.377i 1.25861 0.265149i
\(719\) 54.1160 + 31.2439i 0.0752656 + 0.0434546i 0.537161 0.843480i \(-0.319497\pi\)
−0.461895 + 0.886935i \(0.652830\pi\)
\(720\) 53.8176 + 169.802i 0.0747467 + 0.235836i
\(721\) −469.642 + 525.189i −0.651376 + 0.728417i
\(722\) 222.845 681.650i 0.308649 0.944113i
\(723\) 331.354 + 191.307i 0.458305 + 0.264602i
\(724\) −126.528 + 1163.35i −0.174762 + 1.60684i
\(725\) 20.6271 11.9090i 0.0284511 0.0164263i
\(726\) −903.992 1007.64i −1.24517 1.38794i
\(727\) 889.995i 1.22420i −0.790779 0.612101i \(-0.790324\pi\)
0.790779 0.612101i \(-0.209676\pi\)
\(728\) −73.8300 166.724i −0.101415 0.229017i
\(729\) 417.569 0.572797
\(730\) −341.586 + 306.449i −0.467927 + 0.419794i
\(731\) −102.573 177.661i −0.140318 0.243038i
\(732\) −141.395 + 1300.04i −0.193162 + 1.77601i
\(733\) −456.127 + 790.035i −0.622274 + 1.07781i 0.366787 + 0.930305i \(0.380458\pi\)
−0.989061 + 0.147505i \(0.952876\pi\)
\(734\) 1191.81 + 389.628i 1.62372 + 0.530828i
\(735\) 659.577 + 288.276i 0.897383 + 0.392212i
\(736\) 1325.19 + 11.9801i 1.80053 + 0.0162773i
\(737\) −124.753 + 216.079i −0.169271 + 0.293187i
\(738\) −74.7438 354.795i −0.101279 0.480752i
\(739\) 1081.52 624.415i 1.46349 0.844946i 0.464319 0.885668i \(-0.346299\pi\)
0.999171 + 0.0407224i \(0.0129659\pi\)
\(740\) −9.39382 21.3059i −0.0126944 0.0287917i
\(741\) 17.2514 0.0232813
\(742\) −320.793 + 557.702i −0.432336 + 0.751620i
\(743\) −305.880 −0.411682 −0.205841 0.978585i \(-0.565993\pi\)
−0.205841 + 0.978585i \(0.565993\pi\)
\(744\) −0.454075 + 0.0452365i −0.000610316 + 6.08018e-5i
\(745\) 318.766 184.040i 0.427874 0.247033i
\(746\) 170.106 + 807.464i 0.228025 + 1.08239i
\(747\) 132.145 228.882i 0.176901 0.306401i
\(748\) −908.318 664.963i −1.21433 0.888988i
\(749\) 499.041 558.065i 0.666276 0.745080i
\(750\) −286.323 + 875.820i −0.381764 + 1.16776i
\(751\) −258.895 + 448.420i −0.344734 + 0.597097i −0.985305 0.170802i \(-0.945364\pi\)
0.640571 + 0.767899i \(0.278698\pi\)
\(752\) −422.564 386.048i −0.561920 0.513362i
\(753\) −206.288 357.302i −0.273955 0.474504i
\(754\) 18.1472 16.2805i 0.0240678 0.0215921i
\(755\) 569.012 0.753659
\(756\) −581.817 189.171i −0.769599 0.250226i
\(757\) 939.898i 1.24161i −0.783965 0.620804i \(-0.786806\pi\)
0.783965 0.620804i \(-0.213194\pi\)
\(758\) 486.982 436.889i 0.642457 0.576371i
\(759\) 2182.85 1260.27i 2.87596 1.66044i
\(760\) −49.0075 22.1388i −0.0644836 0.0291301i
\(761\) −976.757 563.931i −1.28352 0.741039i −0.306028 0.952022i \(-0.599000\pi\)
−0.977490 + 0.210983i \(0.932334\pi\)
\(762\) 265.809 813.072i 0.348831 1.06702i
\(763\) −115.044 349.995i −0.150779 0.458710i
\(764\) −455.816 333.695i −0.596618 0.436773i
\(765\) 151.701 + 87.5846i 0.198302 + 0.114490i
\(766\) 102.603 + 487.039i 0.133947 +