Defining parameters
| Level: | \( N \) | \(=\) | \( 56 = 2^{3} \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 56.f (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 28 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 0 \) | ||
| Sturm bound: | \(16\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(56, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 12 | 0 | 12 |
| Cusp forms | 4 | 0 | 4 |
| Eisenstein series | 8 | 0 | 8 |
Decomposition of \(S_{2}^{\mathrm{old}}(56, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(56, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 2}\)