Properties

Label 558.2.h
Level $558$
Weight $2$
Character orbit 558.h
Rep. character $\chi_{558}(25,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $64$
Newform subspaces $2$
Sturm bound $192$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 558 = 2 \cdot 3^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 558.h (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 279 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 2 \)
Sturm bound: \(192\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(558, [\chi])\).

Total New Old
Modular forms 200 64 136
Cusp forms 184 64 120
Eisenstein series 16 0 16

Trace form

\( 64 q - 4 q^{3} - 32 q^{4} + 4 q^{5} - 4 q^{7} - 4 q^{9} - 4 q^{11} + 8 q^{12} + 8 q^{13} - 2 q^{15} - 32 q^{16} - 8 q^{17} + 16 q^{18} - 4 q^{19} - 2 q^{20} - 8 q^{21} - 2 q^{23} + 76 q^{25} - 16 q^{26}+ \cdots - 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(558, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
558.2.h.a 558.h 279.g $32$ $4.456$ None 558.2.g.a \(-16\) \(-2\) \(2\) \(-2\) $\mathrm{SU}(2)[C_{3}]$
558.2.h.b 558.h 279.g $32$ $4.456$ None 558.2.g.b \(16\) \(-2\) \(2\) \(-2\) $\mathrm{SU}(2)[C_{3}]$

Decomposition of \(S_{2}^{\mathrm{old}}(558, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(558, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(279, [\chi])\)\(^{\oplus 2}\)