Defining parameters
| Level: | \( N \) | \(=\) | \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 546.q (of order \(6\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 273 \) |
| Character field: | \(\Q(\zeta_{6})\) | ||
| Newform subspaces: | \( 10 \) | ||
| Sturm bound: | \(224\) | ||
| Trace bound: | \(3\) | ||
| Distinguishing \(T_p\): | \(5\), \(11\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(546, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 240 | 72 | 168 |
| Cusp forms | 208 | 72 | 136 |
| Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(546, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(546, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(546, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(273, [\chi])\)\(^{\oplus 2}\)