Properties

Label 546.2.i.j.79.1
Level $546$
Weight $2$
Character 546.79
Analytic conductor $4.360$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [546,2,Mod(79,546)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(546, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("546.79");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 79.1
Root \(-1.32288 + 2.29129i\) of defining polynomial
Character \(\chi\) \(=\) 546.79
Dual form 546.2.i.j.235.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-0.822876 + 1.42526i) q^{5} -1.00000 q^{6} +(-1.32288 + 2.29129i) q^{7} -1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-0.822876 + 1.42526i) q^{5} -1.00000 q^{6} +(-1.32288 + 2.29129i) q^{7} -1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +(0.822876 + 1.42526i) q^{10} +(2.32288 + 4.02334i) q^{11} +(-0.500000 + 0.866025i) q^{12} +1.00000 q^{13} +(1.32288 + 2.29129i) q^{14} +1.64575 q^{15} +(-0.500000 + 0.866025i) q^{16} +(0.677124 + 1.17281i) q^{17} +(0.500000 + 0.866025i) q^{18} +(-2.50000 + 4.33013i) q^{19} +1.64575 q^{20} +2.64575 q^{21} +4.64575 q^{22} +(3.82288 - 6.62141i) q^{23} +(0.500000 + 0.866025i) q^{24} +(1.14575 + 1.98450i) q^{25} +(0.500000 - 0.866025i) q^{26} +1.00000 q^{27} +2.64575 q^{28} -6.29150 q^{29} +(0.822876 - 1.42526i) q^{30} +(3.64575 + 6.31463i) q^{31} +(0.500000 + 0.866025i) q^{32} +(2.32288 - 4.02334i) q^{33} +1.35425 q^{34} +(-2.17712 - 3.77089i) q^{35} +1.00000 q^{36} +(-0.177124 + 0.306788i) q^{37} +(2.50000 + 4.33013i) q^{38} +(-0.500000 - 0.866025i) q^{39} +(0.822876 - 1.42526i) q^{40} -7.64575 q^{41} +(1.32288 - 2.29129i) q^{42} +5.29150 q^{43} +(2.32288 - 4.02334i) q^{44} +(-0.822876 - 1.42526i) q^{45} +(-3.82288 - 6.62141i) q^{46} +(-1.50000 + 2.59808i) q^{47} +1.00000 q^{48} +(-3.50000 - 6.06218i) q^{49} +2.29150 q^{50} +(0.677124 - 1.17281i) q^{51} +(-0.500000 - 0.866025i) q^{52} +(1.50000 + 2.59808i) q^{53} +(0.500000 - 0.866025i) q^{54} -7.64575 q^{55} +(1.32288 - 2.29129i) q^{56} +5.00000 q^{57} +(-3.14575 + 5.44860i) q^{58} +(-3.96863 - 6.87386i) q^{59} +(-0.822876 - 1.42526i) q^{60} +(-1.96863 + 3.40976i) q^{61} +7.29150 q^{62} +(-1.32288 - 2.29129i) q^{63} +1.00000 q^{64} +(-0.822876 + 1.42526i) q^{65} +(-2.32288 - 4.02334i) q^{66} +(6.79150 + 11.7632i) q^{67} +(0.677124 - 1.17281i) q^{68} -7.64575 q^{69} -4.35425 q^{70} +5.70850 q^{71} +(0.500000 - 0.866025i) q^{72} +(4.17712 + 7.23499i) q^{73} +(0.177124 + 0.306788i) q^{74} +(1.14575 - 1.98450i) q^{75} +5.00000 q^{76} -12.2915 q^{77} -1.00000 q^{78} +(5.00000 - 8.66025i) q^{79} +(-0.822876 - 1.42526i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-3.82288 + 6.62141i) q^{82} -2.70850 q^{83} +(-1.32288 - 2.29129i) q^{84} -2.22876 q^{85} +(2.64575 - 4.58258i) q^{86} +(3.14575 + 5.44860i) q^{87} +(-2.32288 - 4.02334i) q^{88} +(-0.531373 + 0.920365i) q^{89} -1.64575 q^{90} +(-1.32288 + 2.29129i) q^{91} -7.64575 q^{92} +(3.64575 - 6.31463i) q^{93} +(1.50000 + 2.59808i) q^{94} +(-4.11438 - 7.12631i) q^{95} +(0.500000 - 0.866025i) q^{96} -14.9373 q^{97} -7.00000 q^{98} -4.64575 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 2 q^{3} - 2 q^{4} + 2 q^{5} - 4 q^{6} - 4 q^{8} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{2} - 2 q^{3} - 2 q^{4} + 2 q^{5} - 4 q^{6} - 4 q^{8} - 2 q^{9} - 2 q^{10} + 4 q^{11} - 2 q^{12} + 4 q^{13} - 4 q^{15} - 2 q^{16} + 8 q^{17} + 2 q^{18} - 10 q^{19} - 4 q^{20} + 8 q^{22} + 10 q^{23} + 2 q^{24} - 6 q^{25} + 2 q^{26} + 4 q^{27} - 4 q^{29} - 2 q^{30} + 4 q^{31} + 2 q^{32} + 4 q^{33} + 16 q^{34} - 14 q^{35} + 4 q^{36} - 6 q^{37} + 10 q^{38} - 2 q^{39} - 2 q^{40} - 20 q^{41} + 4 q^{44} + 2 q^{45} - 10 q^{46} - 6 q^{47} + 4 q^{48} - 14 q^{49} - 12 q^{50} + 8 q^{51} - 2 q^{52} + 6 q^{53} + 2 q^{54} - 20 q^{55} + 20 q^{57} - 2 q^{58} + 2 q^{60} + 8 q^{61} + 8 q^{62} + 4 q^{64} + 2 q^{65} - 4 q^{66} + 6 q^{67} + 8 q^{68} - 20 q^{69} - 28 q^{70} + 44 q^{71} + 2 q^{72} + 22 q^{73} + 6 q^{74} - 6 q^{75} + 20 q^{76} - 28 q^{77} - 4 q^{78} + 20 q^{79} + 2 q^{80} - 2 q^{81} - 10 q^{82} - 32 q^{83} + 44 q^{85} + 2 q^{87} - 4 q^{88} - 18 q^{89} + 4 q^{90} - 20 q^{92} + 4 q^{93} + 6 q^{94} + 10 q^{95} + 2 q^{96} - 28 q^{97} - 28 q^{98} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −0.822876 + 1.42526i −0.368001 + 0.637397i −0.989253 0.146214i \(-0.953291\pi\)
0.621252 + 0.783611i \(0.286624\pi\)
\(6\) −1.00000 −0.408248
\(7\) −1.32288 + 2.29129i −0.500000 + 0.866025i
\(8\) −1.00000 −0.353553
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0.822876 + 1.42526i 0.260216 + 0.450708i
\(11\) 2.32288 + 4.02334i 0.700373 + 1.21308i 0.968335 + 0.249653i \(0.0803165\pi\)
−0.267962 + 0.963429i \(0.586350\pi\)
\(12\) −0.500000 + 0.866025i −0.144338 + 0.250000i
\(13\) 1.00000 0.277350
\(14\) 1.32288 + 2.29129i 0.353553 + 0.612372i
\(15\) 1.64575 0.424931
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 0.677124 + 1.17281i 0.164227 + 0.284449i 0.936380 0.350987i \(-0.114154\pi\)
−0.772154 + 0.635436i \(0.780820\pi\)
\(18\) 0.500000 + 0.866025i 0.117851 + 0.204124i
\(19\) −2.50000 + 4.33013i −0.573539 + 0.993399i 0.422659 + 0.906289i \(0.361097\pi\)
−0.996199 + 0.0871106i \(0.972237\pi\)
\(20\) 1.64575 0.368001
\(21\) 2.64575 0.577350
\(22\) 4.64575 0.990478
\(23\) 3.82288 6.62141i 0.797125 1.38066i −0.124357 0.992238i \(-0.539687\pi\)
0.921481 0.388423i \(-0.126980\pi\)
\(24\) 0.500000 + 0.866025i 0.102062 + 0.176777i
\(25\) 1.14575 + 1.98450i 0.229150 + 0.396900i
\(26\) 0.500000 0.866025i 0.0980581 0.169842i
\(27\) 1.00000 0.192450
\(28\) 2.64575 0.500000
\(29\) −6.29150 −1.16830 −0.584151 0.811645i \(-0.698573\pi\)
−0.584151 + 0.811645i \(0.698573\pi\)
\(30\) 0.822876 1.42526i 0.150236 0.260216i
\(31\) 3.64575 + 6.31463i 0.654796 + 1.13414i 0.981945 + 0.189167i \(0.0605789\pi\)
−0.327149 + 0.944973i \(0.606088\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 2.32288 4.02334i 0.404361 0.700373i
\(34\) 1.35425 0.232252
\(35\) −2.17712 3.77089i −0.368001 0.637397i
\(36\) 1.00000 0.166667
\(37\) −0.177124 + 0.306788i −0.0291191 + 0.0504357i −0.880218 0.474570i \(-0.842604\pi\)
0.851099 + 0.525006i \(0.175937\pi\)
\(38\) 2.50000 + 4.33013i 0.405554 + 0.702439i
\(39\) −0.500000 0.866025i −0.0800641 0.138675i
\(40\) 0.822876 1.42526i 0.130108 0.225354i
\(41\) −7.64575 −1.19407 −0.597033 0.802217i \(-0.703654\pi\)
−0.597033 + 0.802217i \(0.703654\pi\)
\(42\) 1.32288 2.29129i 0.204124 0.353553i
\(43\) 5.29150 0.806947 0.403473 0.914991i \(-0.367803\pi\)
0.403473 + 0.914991i \(0.367803\pi\)
\(44\) 2.32288 4.02334i 0.350187 0.606541i
\(45\) −0.822876 1.42526i −0.122667 0.212466i
\(46\) −3.82288 6.62141i −0.563652 0.976274i
\(47\) −1.50000 + 2.59808i −0.218797 + 0.378968i −0.954441 0.298401i \(-0.903547\pi\)
0.735643 + 0.677369i \(0.236880\pi\)
\(48\) 1.00000 0.144338
\(49\) −3.50000 6.06218i −0.500000 0.866025i
\(50\) 2.29150 0.324067
\(51\) 0.677124 1.17281i 0.0948164 0.164227i
\(52\) −0.500000 0.866025i −0.0693375 0.120096i
\(53\) 1.50000 + 2.59808i 0.206041 + 0.356873i 0.950464 0.310835i \(-0.100609\pi\)
−0.744423 + 0.667708i \(0.767275\pi\)
\(54\) 0.500000 0.866025i 0.0680414 0.117851i
\(55\) −7.64575 −1.03095
\(56\) 1.32288 2.29129i 0.176777 0.306186i
\(57\) 5.00000 0.662266
\(58\) −3.14575 + 5.44860i −0.413057 + 0.715436i
\(59\) −3.96863 6.87386i −0.516671 0.894901i −0.999813 0.0193585i \(-0.993838\pi\)
0.483141 0.875542i \(-0.339496\pi\)
\(60\) −0.822876 1.42526i −0.106233 0.184001i
\(61\) −1.96863 + 3.40976i −0.252057 + 0.436575i −0.964092 0.265569i \(-0.914440\pi\)
0.712035 + 0.702144i \(0.247774\pi\)
\(62\) 7.29150 0.926022
\(63\) −1.32288 2.29129i −0.166667 0.288675i
\(64\) 1.00000 0.125000
\(65\) −0.822876 + 1.42526i −0.102065 + 0.176782i
\(66\) −2.32288 4.02334i −0.285926 0.495239i
\(67\) 6.79150 + 11.7632i 0.829714 + 1.43711i 0.898263 + 0.439459i \(0.144830\pi\)
−0.0685485 + 0.997648i \(0.521837\pi\)
\(68\) 0.677124 1.17281i 0.0821134 0.142225i
\(69\) −7.64575 −0.920440
\(70\) −4.35425 −0.520432
\(71\) 5.70850 0.677474 0.338737 0.940881i \(-0.390000\pi\)
0.338737 + 0.940881i \(0.390000\pi\)
\(72\) 0.500000 0.866025i 0.0589256 0.102062i
\(73\) 4.17712 + 7.23499i 0.488895 + 0.846792i 0.999918 0.0127753i \(-0.00406663\pi\)
−0.511023 + 0.859567i \(0.670733\pi\)
\(74\) 0.177124 + 0.306788i 0.0205903 + 0.0356634i
\(75\) 1.14575 1.98450i 0.132300 0.229150i
\(76\) 5.00000 0.573539
\(77\) −12.2915 −1.40075
\(78\) −1.00000 −0.113228
\(79\) 5.00000 8.66025i 0.562544 0.974355i −0.434730 0.900561i \(-0.643156\pi\)
0.997274 0.0737937i \(-0.0235106\pi\)
\(80\) −0.822876 1.42526i −0.0920003 0.159349i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −3.82288 + 6.62141i −0.422166 + 0.731213i
\(83\) −2.70850 −0.297296 −0.148648 0.988890i \(-0.547492\pi\)
−0.148648 + 0.988890i \(0.547492\pi\)
\(84\) −1.32288 2.29129i −0.144338 0.250000i
\(85\) −2.22876 −0.241743
\(86\) 2.64575 4.58258i 0.285299 0.494152i
\(87\) 3.14575 + 5.44860i 0.337260 + 0.584151i
\(88\) −2.32288 4.02334i −0.247619 0.428889i
\(89\) −0.531373 + 0.920365i −0.0563254 + 0.0975585i −0.892813 0.450427i \(-0.851272\pi\)
0.836488 + 0.547985i \(0.184605\pi\)
\(90\) −1.64575 −0.173477
\(91\) −1.32288 + 2.29129i −0.138675 + 0.240192i
\(92\) −7.64575 −0.797125
\(93\) 3.64575 6.31463i 0.378047 0.654796i
\(94\) 1.50000 + 2.59808i 0.154713 + 0.267971i
\(95\) −4.11438 7.12631i −0.422126 0.731144i
\(96\) 0.500000 0.866025i 0.0510310 0.0883883i
\(97\) −14.9373 −1.51665 −0.758324 0.651878i \(-0.773982\pi\)
−0.758324 + 0.651878i \(0.773982\pi\)
\(98\) −7.00000 −0.707107
\(99\) −4.64575 −0.466916
\(100\) 1.14575 1.98450i 0.114575 0.198450i
\(101\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(102\) −0.677124 1.17281i −0.0670453 0.116126i
\(103\) −2.64575 + 4.58258i −0.260694 + 0.451535i −0.966426 0.256943i \(-0.917285\pi\)
0.705733 + 0.708478i \(0.250618\pi\)
\(104\) −1.00000 −0.0980581
\(105\) −2.17712 + 3.77089i −0.212466 + 0.368001i
\(106\) 3.00000 0.291386
\(107\) 6.00000 10.3923i 0.580042 1.00466i −0.415432 0.909624i \(-0.636370\pi\)
0.995474 0.0950377i \(-0.0302972\pi\)
\(108\) −0.500000 0.866025i −0.0481125 0.0833333i
\(109\) 2.00000 + 3.46410i 0.191565 + 0.331801i 0.945769 0.324840i \(-0.105310\pi\)
−0.754204 + 0.656640i \(0.771977\pi\)
\(110\) −3.82288 + 6.62141i −0.364497 + 0.631327i
\(111\) 0.354249 0.0336238
\(112\) −1.32288 2.29129i −0.125000 0.216506i
\(113\) −11.2288 −1.05631 −0.528156 0.849147i \(-0.677116\pi\)
−0.528156 + 0.849147i \(0.677116\pi\)
\(114\) 2.50000 4.33013i 0.234146 0.405554i
\(115\) 6.29150 + 10.8972i 0.586686 + 1.01617i
\(116\) 3.14575 + 5.44860i 0.292076 + 0.505890i
\(117\) −0.500000 + 0.866025i −0.0462250 + 0.0800641i
\(118\) −7.93725 −0.730683
\(119\) −3.58301 −0.328454
\(120\) −1.64575 −0.150236
\(121\) −5.29150 + 9.16515i −0.481046 + 0.833196i
\(122\) 1.96863 + 3.40976i 0.178231 + 0.308705i
\(123\) 3.82288 + 6.62141i 0.344697 + 0.597033i
\(124\) 3.64575 6.31463i 0.327398 0.567070i
\(125\) −12.0000 −1.07331
\(126\) −2.64575 −0.235702
\(127\) 16.2288 1.44007 0.720035 0.693938i \(-0.244126\pi\)
0.720035 + 0.693938i \(0.244126\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) −2.64575 4.58258i −0.232945 0.403473i
\(130\) 0.822876 + 1.42526i 0.0721710 + 0.125004i
\(131\) 2.46863 4.27579i 0.215685 0.373577i −0.737799 0.675020i \(-0.764135\pi\)
0.953484 + 0.301443i \(0.0974683\pi\)
\(132\) −4.64575 −0.404361
\(133\) −6.61438 11.4564i −0.573539 0.993399i
\(134\) 13.5830 1.17339
\(135\) −0.822876 + 1.42526i −0.0708219 + 0.122667i
\(136\) −0.677124 1.17281i −0.0580629 0.100568i
\(137\) −8.76013 15.1730i −0.748428 1.29632i −0.948576 0.316550i \(-0.897475\pi\)
0.200147 0.979766i \(-0.435858\pi\)
\(138\) −3.82288 + 6.62141i −0.325425 + 0.563652i
\(139\) 4.22876 0.358678 0.179339 0.983787i \(-0.442604\pi\)
0.179339 + 0.983787i \(0.442604\pi\)
\(140\) −2.17712 + 3.77089i −0.184001 + 0.318698i
\(141\) 3.00000 0.252646
\(142\) 2.85425 4.94370i 0.239523 0.414866i
\(143\) 2.32288 + 4.02334i 0.194249 + 0.336448i
\(144\) −0.500000 0.866025i −0.0416667 0.0721688i
\(145\) 5.17712 8.96704i 0.429937 0.744672i
\(146\) 8.35425 0.691403
\(147\) −3.50000 + 6.06218i −0.288675 + 0.500000i
\(148\) 0.354249 0.0291191
\(149\) 11.4686 19.8642i 0.939547 1.62734i 0.173228 0.984882i \(-0.444580\pi\)
0.766319 0.642461i \(-0.222086\pi\)
\(150\) −1.14575 1.98450i −0.0935502 0.162034i
\(151\) −10.9686 18.9982i −0.892614 1.54605i −0.836730 0.547616i \(-0.815536\pi\)
−0.0558844 0.998437i \(-0.517798\pi\)
\(152\) 2.50000 4.33013i 0.202777 0.351220i
\(153\) −1.35425 −0.109485
\(154\) −6.14575 + 10.6448i −0.495239 + 0.857779i
\(155\) −12.0000 −0.963863
\(156\) −0.500000 + 0.866025i −0.0400320 + 0.0693375i
\(157\) 1.32288 + 2.29129i 0.105577 + 0.182865i 0.913974 0.405773i \(-0.132998\pi\)
−0.808397 + 0.588638i \(0.799664\pi\)
\(158\) −5.00000 8.66025i −0.397779 0.688973i
\(159\) 1.50000 2.59808i 0.118958 0.206041i
\(160\) −1.64575 −0.130108
\(161\) 10.1144 + 17.5186i 0.797125 + 1.38066i
\(162\) −1.00000 −0.0785674
\(163\) −11.7915 + 20.4235i −0.923582 + 1.59969i −0.129755 + 0.991546i \(0.541419\pi\)
−0.793826 + 0.608145i \(0.791914\pi\)
\(164\) 3.82288 + 6.62141i 0.298516 + 0.517046i
\(165\) 3.82288 + 6.62141i 0.297610 + 0.515476i
\(166\) −1.35425 + 2.34563i −0.105110 + 0.182056i
\(167\) 24.8745 1.92485 0.962424 0.271553i \(-0.0875371\pi\)
0.962424 + 0.271553i \(0.0875371\pi\)
\(168\) −2.64575 −0.204124
\(169\) 1.00000 0.0769231
\(170\) −1.11438 + 1.93016i −0.0854689 + 0.148036i
\(171\) −2.50000 4.33013i −0.191180 0.331133i
\(172\) −2.64575 4.58258i −0.201737 0.349418i
\(173\) 5.85425 10.1399i 0.445090 0.770919i −0.552968 0.833202i \(-0.686505\pi\)
0.998059 + 0.0622834i \(0.0198382\pi\)
\(174\) 6.29150 0.476958
\(175\) −6.06275 −0.458301
\(176\) −4.64575 −0.350187
\(177\) −3.96863 + 6.87386i −0.298300 + 0.516671i
\(178\) 0.531373 + 0.920365i 0.0398281 + 0.0689843i
\(179\) 3.00000 + 5.19615i 0.224231 + 0.388379i 0.956088 0.293079i \(-0.0946798\pi\)
−0.731858 + 0.681457i \(0.761346\pi\)
\(180\) −0.822876 + 1.42526i −0.0613335 + 0.106233i
\(181\) 9.35425 0.695296 0.347648 0.937625i \(-0.386980\pi\)
0.347648 + 0.937625i \(0.386980\pi\)
\(182\) 1.32288 + 2.29129i 0.0980581 + 0.169842i
\(183\) 3.93725 0.291050
\(184\) −3.82288 + 6.62141i −0.281826 + 0.488137i
\(185\) −0.291503 0.504897i −0.0214317 0.0371208i
\(186\) −3.64575 6.31463i −0.267319 0.463011i
\(187\) −3.14575 + 5.44860i −0.230040 + 0.398441i
\(188\) 3.00000 0.218797
\(189\) −1.32288 + 2.29129i −0.0962250 + 0.166667i
\(190\) −8.22876 −0.596977
\(191\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(192\) −0.500000 0.866025i −0.0360844 0.0625000i
\(193\) −1.53137 2.65242i −0.110231 0.190925i 0.805633 0.592416i \(-0.201826\pi\)
−0.915863 + 0.401490i \(0.868492\pi\)
\(194\) −7.46863 + 12.9360i −0.536216 + 0.928754i
\(195\) 1.64575 0.117855
\(196\) −3.50000 + 6.06218i −0.250000 + 0.433013i
\(197\) 20.8118 1.48278 0.741388 0.671076i \(-0.234168\pi\)
0.741388 + 0.671076i \(0.234168\pi\)
\(198\) −2.32288 + 4.02334i −0.165080 + 0.285926i
\(199\) −2.11438 3.66221i −0.149884 0.259607i 0.781300 0.624155i \(-0.214557\pi\)
−0.931185 + 0.364548i \(0.881223\pi\)
\(200\) −1.14575 1.98450i −0.0810169 0.140325i
\(201\) 6.79150 11.7632i 0.479036 0.829714i
\(202\) 0 0
\(203\) 8.32288 14.4156i 0.584151 1.01178i
\(204\) −1.35425 −0.0948164
\(205\) 6.29150 10.8972i 0.439418 0.761094i
\(206\) 2.64575 + 4.58258i 0.184338 + 0.319283i
\(207\) 3.82288 + 6.62141i 0.265708 + 0.460220i
\(208\) −0.500000 + 0.866025i −0.0346688 + 0.0600481i
\(209\) −23.2288 −1.60677
\(210\) 2.17712 + 3.77089i 0.150236 + 0.260216i
\(211\) −11.6458 −0.801727 −0.400863 0.916138i \(-0.631290\pi\)
−0.400863 + 0.916138i \(0.631290\pi\)
\(212\) 1.50000 2.59808i 0.103020 0.178437i
\(213\) −2.85425 4.94370i −0.195570 0.338737i
\(214\) −6.00000 10.3923i −0.410152 0.710403i
\(215\) −4.35425 + 7.54178i −0.296957 + 0.514345i
\(216\) −1.00000 −0.0680414
\(217\) −19.2915 −1.30959
\(218\) 4.00000 0.270914
\(219\) 4.17712 7.23499i 0.282264 0.488895i
\(220\) 3.82288 + 6.62141i 0.257738 + 0.446416i
\(221\) 0.677124 + 1.17281i 0.0455483 + 0.0788920i
\(222\) 0.177124 0.306788i 0.0118878 0.0205903i
\(223\) 16.5203 1.10628 0.553139 0.833089i \(-0.313430\pi\)
0.553139 + 0.833089i \(0.313430\pi\)
\(224\) −2.64575 −0.176777
\(225\) −2.29150 −0.152767
\(226\) −5.61438 + 9.72439i −0.373463 + 0.646857i
\(227\) 7.64575 + 13.2428i 0.507466 + 0.878957i 0.999963 + 0.00864295i \(0.00275117\pi\)
−0.492496 + 0.870315i \(0.663915\pi\)
\(228\) −2.50000 4.33013i −0.165567 0.286770i
\(229\) 13.2288 22.9129i 0.874181 1.51413i 0.0165480 0.999863i \(-0.494732\pi\)
0.857633 0.514263i \(-0.171934\pi\)
\(230\) 12.5830 0.829699
\(231\) 6.14575 + 10.6448i 0.404361 + 0.700373i
\(232\) 6.29150 0.413057
\(233\) 2.32288 4.02334i 0.152177 0.263578i −0.779851 0.625965i \(-0.784705\pi\)
0.932027 + 0.362388i \(0.118038\pi\)
\(234\) 0.500000 + 0.866025i 0.0326860 + 0.0566139i
\(235\) −2.46863 4.27579i −0.161035 0.278922i
\(236\) −3.96863 + 6.87386i −0.258336 + 0.447450i
\(237\) −10.0000 −0.649570
\(238\) −1.79150 + 3.10297i −0.116126 + 0.201136i
\(239\) 3.00000 0.194054 0.0970269 0.995282i \(-0.469067\pi\)
0.0970269 + 0.995282i \(0.469067\pi\)
\(240\) −0.822876 + 1.42526i −0.0531164 + 0.0920003i
\(241\) −8.93725 15.4798i −0.575699 0.997140i −0.995965 0.0897393i \(-0.971397\pi\)
0.420266 0.907401i \(-0.361937\pi\)
\(242\) 5.29150 + 9.16515i 0.340151 + 0.589158i
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) 3.93725 0.252057
\(245\) 11.5203 0.736002
\(246\) 7.64575 0.487475
\(247\) −2.50000 + 4.33013i −0.159071 + 0.275519i
\(248\) −3.64575 6.31463i −0.231505 0.400979i
\(249\) 1.35425 + 2.34563i 0.0858220 + 0.148648i
\(250\) −6.00000 + 10.3923i −0.379473 + 0.657267i
\(251\) −2.70850 −0.170959 −0.0854794 0.996340i \(-0.527242\pi\)
−0.0854794 + 0.996340i \(0.527242\pi\)
\(252\) −1.32288 + 2.29129i −0.0833333 + 0.144338i
\(253\) 35.5203 2.23314
\(254\) 8.11438 14.0545i 0.509141 0.881859i
\(255\) 1.11438 + 1.93016i 0.0697851 + 0.120871i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −7.93725 + 13.7477i −0.495112 + 0.857560i −0.999984 0.00563467i \(-0.998206\pi\)
0.504872 + 0.863194i \(0.331540\pi\)
\(258\) −5.29150 −0.329435
\(259\) −0.468627 0.811686i −0.0291191 0.0504357i
\(260\) 1.64575 0.102065
\(261\) 3.14575 5.44860i 0.194717 0.337260i
\(262\) −2.46863 4.27579i −0.152512 0.264159i
\(263\) −0.822876 1.42526i −0.0507407 0.0878854i 0.839539 0.543299i \(-0.182825\pi\)
−0.890280 + 0.455413i \(0.849492\pi\)
\(264\) −2.32288 + 4.02334i −0.142963 + 0.247619i
\(265\) −4.93725 −0.303293
\(266\) −13.2288 −0.811107
\(267\) 1.06275 0.0650390
\(268\) 6.79150 11.7632i 0.414857 0.718553i
\(269\) 12.4373 + 21.5420i 0.758313 + 1.31344i 0.943710 + 0.330773i \(0.107309\pi\)
−0.185398 + 0.982664i \(0.559357\pi\)
\(270\) 0.822876 + 1.42526i 0.0500786 + 0.0867387i
\(271\) 8.67712 15.0292i 0.527098 0.912960i −0.472404 0.881382i \(-0.656613\pi\)
0.999501 0.0315777i \(-0.0100532\pi\)
\(272\) −1.35425 −0.0821134
\(273\) 2.64575 0.160128
\(274\) −17.5203 −1.05844
\(275\) −5.32288 + 9.21949i −0.320981 + 0.555956i
\(276\) 3.82288 + 6.62141i 0.230110 + 0.398562i
\(277\) 9.26013 + 16.0390i 0.556387 + 0.963691i 0.997794 + 0.0663840i \(0.0211462\pi\)
−0.441407 + 0.897307i \(0.645520\pi\)
\(278\) 2.11438 3.66221i 0.126812 0.219645i
\(279\) −7.29150 −0.436531
\(280\) 2.17712 + 3.77089i 0.130108 + 0.225354i
\(281\) 18.5830 1.10857 0.554285 0.832327i \(-0.312992\pi\)
0.554285 + 0.832327i \(0.312992\pi\)
\(282\) 1.50000 2.59808i 0.0893237 0.154713i
\(283\) 13.4686 + 23.3283i 0.800627 + 1.38673i 0.919204 + 0.393781i \(0.128833\pi\)
−0.118577 + 0.992945i \(0.537833\pi\)
\(284\) −2.85425 4.94370i −0.169368 0.293355i
\(285\) −4.11438 + 7.12631i −0.243715 + 0.422126i
\(286\) 4.64575 0.274709
\(287\) 10.1144 17.5186i 0.597033 1.03409i
\(288\) −1.00000 −0.0589256
\(289\) 7.58301 13.1342i 0.446059 0.772597i
\(290\) −5.17712 8.96704i −0.304011 0.526563i
\(291\) 7.46863 + 12.9360i 0.437819 + 0.758324i
\(292\) 4.17712 7.23499i 0.244448 0.423396i
\(293\) −29.5203 −1.72459 −0.862296 0.506405i \(-0.830974\pi\)
−0.862296 + 0.506405i \(0.830974\pi\)
\(294\) 3.50000 + 6.06218i 0.204124 + 0.353553i
\(295\) 13.0627 0.760542
\(296\) 0.177124 0.306788i 0.0102951 0.0178317i
\(297\) 2.32288 + 4.02334i 0.134787 + 0.233458i
\(298\) −11.4686 19.8642i −0.664360 1.15070i
\(299\) 3.82288 6.62141i 0.221083 0.382926i
\(300\) −2.29150 −0.132300
\(301\) −7.00000 + 12.1244i −0.403473 + 0.698836i
\(302\) −21.9373 −1.26235
\(303\) 0 0
\(304\) −2.50000 4.33013i −0.143385 0.248350i
\(305\) −3.23987 5.61162i −0.185514 0.321320i
\(306\) −0.677124 + 1.17281i −0.0387086 + 0.0670453i
\(307\) 11.5830 0.661077 0.330539 0.943793i \(-0.392770\pi\)
0.330539 + 0.943793i \(0.392770\pi\)
\(308\) 6.14575 + 10.6448i 0.350187 + 0.606541i
\(309\) 5.29150 0.301023
\(310\) −6.00000 + 10.3923i −0.340777 + 0.590243i
\(311\) 8.46863 + 14.6681i 0.480212 + 0.831751i 0.999742 0.0227007i \(-0.00722647\pi\)
−0.519531 + 0.854452i \(0.673893\pi\)
\(312\) 0.500000 + 0.866025i 0.0283069 + 0.0490290i
\(313\) 14.5830 25.2585i 0.824280 1.42770i −0.0781880 0.996939i \(-0.524913\pi\)
0.902468 0.430757i \(-0.141753\pi\)
\(314\) 2.64575 0.149308
\(315\) 4.35425 0.245334
\(316\) −10.0000 −0.562544
\(317\) 1.35425 2.34563i 0.0760622 0.131744i −0.825486 0.564423i \(-0.809099\pi\)
0.901548 + 0.432680i \(0.142432\pi\)
\(318\) −1.50000 2.59808i −0.0841158 0.145693i
\(319\) −14.6144 25.3128i −0.818248 1.41725i
\(320\) −0.822876 + 1.42526i −0.0460001 + 0.0796746i
\(321\) −12.0000 −0.669775
\(322\) 20.2288 1.12730
\(323\) −6.77124 −0.376762
\(324\) −0.500000 + 0.866025i −0.0277778 + 0.0481125i
\(325\) 1.14575 + 1.98450i 0.0635548 + 0.110080i
\(326\) 11.7915 + 20.4235i 0.653071 + 1.13115i
\(327\) 2.00000 3.46410i 0.110600 0.191565i
\(328\) 7.64575 0.422166
\(329\) −3.96863 6.87386i −0.218797 0.378968i
\(330\) 7.64575 0.420885
\(331\) −16.2915 + 28.2177i −0.895462 + 1.55099i −0.0622301 + 0.998062i \(0.519821\pi\)
−0.833232 + 0.552924i \(0.813512\pi\)
\(332\) 1.35425 + 2.34563i 0.0743241 + 0.128733i
\(333\) −0.177124 0.306788i −0.00970635 0.0168119i
\(334\) 12.4373 21.5420i 0.680536 1.17872i
\(335\) −22.3542 −1.22134
\(336\) −1.32288 + 2.29129i −0.0721688 + 0.125000i
\(337\) 5.58301 0.304126 0.152063 0.988371i \(-0.451408\pi\)
0.152063 + 0.988371i \(0.451408\pi\)
\(338\) 0.500000 0.866025i 0.0271964 0.0471056i
\(339\) 5.61438 + 9.72439i 0.304931 + 0.528156i
\(340\) 1.11438 + 1.93016i 0.0604356 + 0.104678i
\(341\) −16.9373 + 29.3362i −0.917204 + 1.58864i
\(342\) −5.00000 −0.270369
\(343\) 18.5203 1.00000
\(344\) −5.29150 −0.285299
\(345\) 6.29150 10.8972i 0.338723 0.586686i
\(346\) −5.85425 10.1399i −0.314726 0.545122i
\(347\) 13.1144 + 22.7148i 0.704017 + 1.21939i 0.967045 + 0.254605i \(0.0819453\pi\)
−0.263029 + 0.964788i \(0.584721\pi\)
\(348\) 3.14575 5.44860i 0.168630 0.292076i
\(349\) 3.06275 0.163945 0.0819725 0.996635i \(-0.473878\pi\)
0.0819725 + 0.996635i \(0.473878\pi\)
\(350\) −3.03137 + 5.25049i −0.162034 + 0.280651i
\(351\) 1.00000 0.0533761
\(352\) −2.32288 + 4.02334i −0.123810 + 0.214445i
\(353\) −0.291503 0.504897i −0.0155151 0.0268730i 0.858164 0.513376i \(-0.171605\pi\)
−0.873679 + 0.486503i \(0.838272\pi\)
\(354\) 3.96863 + 6.87386i 0.210930 + 0.365342i
\(355\) −4.69738 + 8.13611i −0.249311 + 0.431820i
\(356\) 1.06275 0.0563254
\(357\) 1.79150 + 3.10297i 0.0948164 + 0.164227i
\(358\) 6.00000 0.317110
\(359\) 3.00000 5.19615i 0.158334 0.274242i −0.775934 0.630814i \(-0.782721\pi\)
0.934268 + 0.356572i \(0.116054\pi\)
\(360\) 0.822876 + 1.42526i 0.0433694 + 0.0751179i
\(361\) −3.00000 5.19615i −0.157895 0.273482i
\(362\) 4.67712 8.10102i 0.245824 0.425780i
\(363\) 10.5830 0.555464
\(364\) 2.64575 0.138675
\(365\) −13.7490 −0.719656
\(366\) 1.96863 3.40976i 0.102902 0.178231i
\(367\) −10.2915 17.8254i −0.537212 0.930479i −0.999053 0.0435157i \(-0.986144\pi\)
0.461841 0.886963i \(-0.347189\pi\)
\(368\) 3.82288 + 6.62141i 0.199281 + 0.345165i
\(369\) 3.82288 6.62141i 0.199011 0.344697i
\(370\) −0.583005 −0.0303090
\(371\) −7.93725 −0.412082
\(372\) −7.29150 −0.378047
\(373\) −4.67712 + 8.10102i −0.242172 + 0.419455i −0.961333 0.275389i \(-0.911193\pi\)
0.719160 + 0.694844i \(0.244527\pi\)
\(374\) 3.14575 + 5.44860i 0.162663 + 0.281740i
\(375\) 6.00000 + 10.3923i 0.309839 + 0.536656i
\(376\) 1.50000 2.59808i 0.0773566 0.133986i
\(377\) −6.29150 −0.324029
\(378\) 1.32288 + 2.29129i 0.0680414 + 0.117851i
\(379\) 33.1660 1.70362 0.851812 0.523848i \(-0.175504\pi\)
0.851812 + 0.523848i \(0.175504\pi\)
\(380\) −4.11438 + 7.12631i −0.211063 + 0.365572i
\(381\) −8.11438 14.0545i −0.415712 0.720035i
\(382\) 0 0
\(383\) 18.8745 32.6916i 0.964442 1.67046i 0.253336 0.967378i \(-0.418472\pi\)
0.711106 0.703085i \(-0.248195\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 10.1144 17.5186i 0.515476 0.892831i
\(386\) −3.06275 −0.155890
\(387\) −2.64575 + 4.58258i −0.134491 + 0.232945i
\(388\) 7.46863 + 12.9360i 0.379162 + 0.656728i
\(389\) −9.14575 15.8409i −0.463708 0.803166i 0.535434 0.844577i \(-0.320148\pi\)
−0.999142 + 0.0414111i \(0.986815\pi\)
\(390\) 0.822876 1.42526i 0.0416679 0.0721710i
\(391\) 10.3542 0.523637
\(392\) 3.50000 + 6.06218i 0.176777 + 0.306186i
\(393\) −4.93725 −0.249052
\(394\) 10.4059 18.0235i 0.524241 0.908012i
\(395\) 8.22876 + 14.2526i 0.414034 + 0.717127i
\(396\) 2.32288 + 4.02334i 0.116729 + 0.202180i
\(397\) −0.468627 + 0.811686i −0.0235197 + 0.0407373i −0.877546 0.479493i \(-0.840821\pi\)
0.854026 + 0.520230i \(0.174154\pi\)
\(398\) −4.22876 −0.211968
\(399\) −6.61438 + 11.4564i −0.331133 + 0.573539i
\(400\) −2.29150 −0.114575
\(401\) −4.11438 + 7.12631i −0.205462 + 0.355871i −0.950280 0.311397i \(-0.899203\pi\)
0.744818 + 0.667268i \(0.232536\pi\)
\(402\) −6.79150 11.7632i −0.338729 0.586696i
\(403\) 3.64575 + 6.31463i 0.181608 + 0.314554i
\(404\) 0 0
\(405\) 1.64575 0.0817780
\(406\) −8.32288 14.4156i −0.413057 0.715436i
\(407\) −1.64575 −0.0815769
\(408\) −0.677124 + 1.17281i −0.0335227 + 0.0580629i
\(409\) 5.53137 + 9.58062i 0.273509 + 0.473731i 0.969758 0.244069i \(-0.0784824\pi\)
−0.696249 + 0.717800i \(0.745149\pi\)
\(410\) −6.29150 10.8972i −0.310715 0.538174i
\(411\) −8.76013 + 15.1730i −0.432105 + 0.748428i
\(412\) 5.29150 0.260694
\(413\) 21.0000 1.03334
\(414\) 7.64575 0.375768
\(415\) 2.22876 3.86032i 0.109405 0.189496i
\(416\) 0.500000 + 0.866025i 0.0245145 + 0.0424604i
\(417\) −2.11438 3.66221i −0.103542 0.179339i
\(418\) −11.6144 + 20.1167i −0.568078 + 0.983940i
\(419\) −22.4575 −1.09712 −0.548561 0.836111i \(-0.684824\pi\)
−0.548561 + 0.836111i \(0.684824\pi\)
\(420\) 4.35425 0.212466
\(421\) −29.6458 −1.44485 −0.722423 0.691452i \(-0.756972\pi\)
−0.722423 + 0.691452i \(0.756972\pi\)
\(422\) −5.82288 + 10.0855i −0.283453 + 0.490955i
\(423\) −1.50000 2.59808i −0.0729325 0.126323i
\(424\) −1.50000 2.59808i −0.0728464 0.126174i
\(425\) −1.55163 + 2.68751i −0.0752652 + 0.130363i
\(426\) −5.70850 −0.276578
\(427\) −5.20850 9.02138i −0.252057 0.436575i
\(428\) −12.0000 −0.580042
\(429\) 2.32288 4.02334i 0.112149 0.194249i
\(430\) 4.35425 + 7.54178i 0.209981 + 0.363697i
\(431\) 0.291503 + 0.504897i 0.0140412 + 0.0243200i 0.872961 0.487791i \(-0.162197\pi\)
−0.858919 + 0.512111i \(0.828864\pi\)
\(432\) −0.500000 + 0.866025i −0.0240563 + 0.0416667i
\(433\) −12.4170 −0.596723 −0.298361 0.954453i \(-0.596440\pi\)
−0.298361 + 0.954453i \(0.596440\pi\)
\(434\) −9.64575 + 16.7069i −0.463011 + 0.801958i
\(435\) −10.3542 −0.496448
\(436\) 2.00000 3.46410i 0.0957826 0.165900i
\(437\) 19.1144 + 33.1071i 0.914365 + 1.58373i
\(438\) −4.17712 7.23499i −0.199591 0.345701i
\(439\) −9.17712 + 15.8952i −0.438000 + 0.758639i −0.997535 0.0701681i \(-0.977646\pi\)
0.559535 + 0.828807i \(0.310980\pi\)
\(440\) 7.64575 0.364497
\(441\) 7.00000 0.333333
\(442\) 1.35425 0.0644150
\(443\) −17.4686 + 30.2565i −0.829960 + 1.43753i 0.0681097 + 0.997678i \(0.478303\pi\)
−0.898069 + 0.439854i \(0.855030\pi\)
\(444\) −0.177124 0.306788i −0.00840595 0.0145595i
\(445\) −0.874508 1.51469i −0.0414556 0.0718033i
\(446\) 8.26013 14.3070i 0.391128 0.677454i
\(447\) −22.9373 −1.08489
\(448\) −1.32288 + 2.29129i −0.0625000 + 0.108253i
\(449\) 12.0000 0.566315 0.283158 0.959073i \(-0.408618\pi\)
0.283158 + 0.959073i \(0.408618\pi\)
\(450\) −1.14575 + 1.98450i −0.0540112 + 0.0935502i
\(451\) −17.7601 30.7614i −0.836292 1.44850i
\(452\) 5.61438 + 9.72439i 0.264078 + 0.457397i
\(453\) −10.9686 + 18.9982i −0.515351 + 0.892614i
\(454\) 15.2915 0.717666
\(455\) −2.17712 3.77089i −0.102065 0.176782i
\(456\) −5.00000 −0.234146
\(457\) −2.88562 + 4.99804i −0.134984 + 0.233799i −0.925591 0.378525i \(-0.876432\pi\)
0.790608 + 0.612323i \(0.209765\pi\)
\(458\) −13.2288 22.9129i −0.618139 1.07065i
\(459\) 0.677124 + 1.17281i 0.0316055 + 0.0547423i
\(460\) 6.29150 10.8972i 0.293343 0.508085i
\(461\) 16.4575 0.766503 0.383251 0.923644i \(-0.374804\pi\)
0.383251 + 0.923644i \(0.374804\pi\)
\(462\) 12.2915 0.571852
\(463\) −17.1660 −0.797772 −0.398886 0.917000i \(-0.630603\pi\)
−0.398886 + 0.917000i \(0.630603\pi\)
\(464\) 3.14575 5.44860i 0.146038 0.252945i
\(465\) 6.00000 + 10.3923i 0.278243 + 0.481932i
\(466\) −2.32288 4.02334i −0.107605 0.186378i
\(467\) 0.239870 0.415468i 0.0110999 0.0192256i −0.860422 0.509582i \(-0.829800\pi\)
0.871522 + 0.490356i \(0.163133\pi\)
\(468\) 1.00000 0.0462250
\(469\) −35.9373 −1.65943
\(470\) −4.93725 −0.227739
\(471\) 1.32288 2.29129i 0.0609549 0.105577i
\(472\) 3.96863 + 6.87386i 0.182671 + 0.316395i
\(473\) 12.2915 + 21.2895i 0.565164 + 0.978893i
\(474\) −5.00000 + 8.66025i −0.229658 + 0.397779i
\(475\) −11.4575 −0.525707
\(476\) 1.79150 + 3.10297i 0.0821134 + 0.142225i
\(477\) −3.00000 −0.137361
\(478\) 1.50000 2.59808i 0.0686084 0.118833i
\(479\) −14.3745 24.8974i −0.656788 1.13759i −0.981442 0.191757i \(-0.938581\pi\)
0.324654 0.945833i \(-0.394752\pi\)
\(480\) 0.822876 + 1.42526i 0.0375590 + 0.0650540i
\(481\) −0.177124 + 0.306788i −0.00807617 + 0.0139883i
\(482\) −17.8745 −0.814162
\(483\) 10.1144 17.5186i 0.460220 0.797125i
\(484\) 10.5830 0.481046
\(485\) 12.2915 21.2895i 0.558128 0.966707i
\(486\) 0.500000 + 0.866025i 0.0226805 + 0.0392837i
\(487\) 4.03137 + 6.98254i 0.182679 + 0.316409i 0.942792 0.333382i \(-0.108190\pi\)
−0.760113 + 0.649791i \(0.774856\pi\)
\(488\) 1.96863 3.40976i 0.0891156 0.154353i
\(489\) 23.5830 1.06646
\(490\) 5.76013 9.97684i 0.260216 0.450708i
\(491\) −31.1660 −1.40650 −0.703251 0.710941i \(-0.748269\pi\)
−0.703251 + 0.710941i \(0.748269\pi\)
\(492\) 3.82288 6.62141i 0.172349 0.298516i
\(493\) −4.26013 7.37876i −0.191867 0.332323i
\(494\) 2.50000 + 4.33013i 0.112480 + 0.194822i
\(495\) 3.82288 6.62141i 0.171825 0.297610i
\(496\) −7.29150 −0.327398
\(497\) −7.55163 + 13.0798i −0.338737 + 0.586710i
\(498\) 2.70850 0.121371
\(499\) 9.35425 16.2020i 0.418754 0.725303i −0.577061 0.816701i \(-0.695800\pi\)
0.995814 + 0.0913986i \(0.0291337\pi\)
\(500\) 6.00000 + 10.3923i 0.268328 + 0.464758i
\(501\) −12.4373 21.5420i −0.555656 0.962424i
\(502\) −1.35425 + 2.34563i −0.0604431 + 0.104690i
\(503\) −16.4575 −0.733804 −0.366902 0.930260i \(-0.619582\pi\)
−0.366902 + 0.930260i \(0.619582\pi\)
\(504\) 1.32288 + 2.29129i 0.0589256 + 0.102062i
\(505\) 0 0
\(506\) 17.7601 30.7614i 0.789534 1.36751i
\(507\) −0.500000 0.866025i −0.0222058 0.0384615i
\(508\) −8.11438 14.0545i −0.360017 0.623568i
\(509\) −12.0000 + 20.7846i −0.531891 + 0.921262i 0.467416 + 0.884037i \(0.345185\pi\)
−0.999307 + 0.0372243i \(0.988148\pi\)
\(510\) 2.22876 0.0986910
\(511\) −22.1033 −0.977791
\(512\) −1.00000 −0.0441942
\(513\) −2.50000 + 4.33013i −0.110378 + 0.191180i
\(514\) 7.93725 + 13.7477i 0.350097 + 0.606386i
\(515\) −4.35425 7.54178i −0.191871 0.332331i
\(516\) −2.64575 + 4.58258i −0.116473 + 0.201737i
\(517\) −13.9373 −0.612960
\(518\) −0.937254 −0.0411806
\(519\) −11.7085 −0.513946
\(520\) 0.822876 1.42526i 0.0360855 0.0625019i
\(521\) −9.00000 15.5885i −0.394297 0.682943i 0.598714 0.800963i \(-0.295679\pi\)
−0.993011 + 0.118020i \(0.962345\pi\)
\(522\) −3.14575 5.44860i −0.137686 0.238479i
\(523\) 18.6458 32.2954i 0.815322 1.41218i −0.0937748 0.995593i \(-0.529893\pi\)
0.909097 0.416585i \(-0.136773\pi\)
\(524\) −4.93725 −0.215685
\(525\) 3.03137 + 5.25049i 0.132300 + 0.229150i
\(526\) −1.64575 −0.0717582
\(527\) −4.93725 + 8.55157i −0.215070 + 0.372512i
\(528\) 2.32288 + 4.02334i 0.101090 + 0.175093i
\(529\) −17.7288 30.7071i −0.770816 1.33509i
\(530\) −2.46863 + 4.27579i −0.107230 + 0.185728i
\(531\) 7.93725 0.344447
\(532\) −6.61438 + 11.4564i −0.286770 + 0.496700i
\(533\) −7.64575 −0.331174
\(534\) 0.531373 0.920365i 0.0229948 0.0398281i
\(535\) 9.87451 + 17.1031i 0.426912 + 0.739434i
\(536\) −6.79150 11.7632i −0.293348 0.508094i
\(537\) 3.00000 5.19615i 0.129460 0.224231i
\(538\) 24.8745 1.07242
\(539\) 16.2601 28.1634i 0.700373 1.21308i
\(540\) 1.64575 0.0708219
\(541\) −18.1771 + 31.4837i −0.781496 + 1.35359i 0.149575 + 0.988750i \(0.452210\pi\)
−0.931070 + 0.364840i \(0.881124\pi\)
\(542\) −8.67712 15.0292i −0.372714 0.645560i
\(543\) −4.67712 8.10102i −0.200715 0.347648i
\(544\) −0.677124 + 1.17281i −0.0290315 + 0.0502840i
\(545\) −6.58301 −0.281985
\(546\) 1.32288 2.29129i 0.0566139 0.0980581i
\(547\) −5.06275 −0.216467 −0.108234 0.994125i \(-0.534519\pi\)
−0.108234 + 0.994125i \(0.534519\pi\)
\(548\) −8.76013 + 15.1730i −0.374214 + 0.648158i
\(549\) −1.96863 3.40976i −0.0840190 0.145525i
\(550\) 5.32288 + 9.21949i 0.226968 + 0.393120i
\(551\) 15.7288 27.2430i 0.670068 1.16059i
\(552\) 7.64575 0.325425
\(553\) 13.2288 + 22.9129i 0.562544 + 0.974355i
\(554\) 18.5203 0.786850
\(555\) −0.291503 + 0.504897i −0.0123736 + 0.0214317i
\(556\) −2.11438 3.66221i −0.0896696 0.155312i
\(557\) 15.5830 + 26.9906i 0.660273 + 1.14363i 0.980544 + 0.196301i \(0.0628928\pi\)
−0.320271 + 0.947326i \(0.603774\pi\)
\(558\) −3.64575 + 6.31463i −0.154337 + 0.267319i
\(559\) 5.29150 0.223807
\(560\) 4.35425 0.184001
\(561\) 6.29150 0.265627
\(562\) 9.29150 16.0934i 0.391938 0.678857i
\(563\) −23.5203 40.7383i −0.991261 1.71691i −0.609874 0.792498i \(-0.708780\pi\)
−0.381387 0.924416i \(-0.624553\pi\)
\(564\) −1.50000 2.59808i −0.0631614 0.109399i
\(565\) 9.23987 16.0039i 0.388724 0.673290i
\(566\) 26.9373 1.13226
\(567\) 2.64575 0.111111
\(568\) −5.70850 −0.239523
\(569\) 3.38562 5.86407i 0.141933 0.245835i −0.786292 0.617855i \(-0.788002\pi\)
0.928224 + 0.372021i \(0.121335\pi\)
\(570\) 4.11438 + 7.12631i 0.172332 + 0.298488i
\(571\) 8.00000 + 13.8564i 0.334790 + 0.579873i 0.983444 0.181210i \(-0.0580014\pi\)
−0.648655 + 0.761083i \(0.724668\pi\)
\(572\) 2.32288 4.02334i 0.0971243 0.168224i
\(573\) 0 0
\(574\) −10.1144 17.5186i −0.422166 0.731213i
\(575\) 17.5203 0.730645
\(576\) −0.500000 + 0.866025i −0.0208333 + 0.0360844i
\(577\) −4.29150 7.43310i −0.178658 0.309444i 0.762763 0.646678i \(-0.223842\pi\)
−0.941421 + 0.337234i \(0.890509\pi\)
\(578\) −7.58301 13.1342i −0.315411 0.546309i
\(579\) −1.53137 + 2.65242i −0.0636417 + 0.110231i
\(580\) −10.3542 −0.429937
\(581\) 3.58301 6.20595i 0.148648 0.257466i
\(582\) 14.9373 0.619169
\(583\) −6.96863 + 12.0700i −0.288611 + 0.499889i
\(584\) −4.17712 7.23499i −0.172851 0.299386i
\(585\) −0.822876 1.42526i −0.0340217 0.0589273i
\(586\) −14.7601 + 25.5653i −0.609735 + 1.05609i
\(587\) 16.0627 0.662980 0.331490 0.943459i \(-0.392449\pi\)
0.331490 + 0.943459i \(0.392449\pi\)
\(588\) 7.00000 0.288675
\(589\) −36.4575 −1.50221
\(590\) 6.53137 11.3127i 0.268892 0.465735i
\(591\) −10.4059 18.0235i −0.428041 0.741388i
\(592\) −0.177124 0.306788i −0.00727977 0.0126089i
\(593\) −3.23987 + 5.61162i −0.133046 + 0.230442i −0.924849 0.380334i \(-0.875809\pi\)
0.791804 + 0.610776i \(0.209142\pi\)
\(594\) 4.64575 0.190617
\(595\) 2.94837 5.10672i 0.120871 0.209355i
\(596\) −22.9373 −0.939547
\(597\) −2.11438 + 3.66221i −0.0865357 + 0.149884i
\(598\) −3.82288 6.62141i −0.156329 0.270770i
\(599\) −7.40588 12.8274i −0.302596 0.524112i 0.674127 0.738615i \(-0.264520\pi\)
−0.976723 + 0.214504i \(0.931187\pi\)
\(600\) −1.14575 + 1.98450i −0.0467751 + 0.0810169i
\(601\) −16.8745 −0.688326 −0.344163 0.938910i \(-0.611837\pi\)
−0.344163 + 0.938910i \(0.611837\pi\)
\(602\) 7.00000 + 12.1244i 0.285299 + 0.494152i
\(603\) −13.5830 −0.553143
\(604\) −10.9686 + 18.9982i −0.446307 + 0.773027i
\(605\) −8.70850 15.0836i −0.354051 0.613234i
\(606\) 0 0
\(607\) 15.4059 26.6838i 0.625305 1.08306i −0.363176 0.931720i \(-0.618308\pi\)
0.988482 0.151340i \(-0.0483589\pi\)
\(608\) −5.00000 −0.202777
\(609\) −16.6458 −0.674520
\(610\) −6.47974 −0.262357
\(611\) −1.50000 + 2.59808i −0.0606835 + 0.105107i
\(612\) 0.677124 + 1.17281i 0.0273711 + 0.0474082i
\(613\) −5.06275 8.76893i −0.204482 0.354174i 0.745485 0.666522i \(-0.232218\pi\)
−0.949968 + 0.312348i \(0.898884\pi\)
\(614\) 5.79150 10.0312i 0.233726 0.404825i
\(615\) −12.5830 −0.507396
\(616\) 12.2915 0.495239
\(617\) −21.2915 −0.857164 −0.428582 0.903503i \(-0.640987\pi\)
−0.428582 + 0.903503i \(0.640987\pi\)
\(618\) 2.64575 4.58258i 0.106428 0.184338i
\(619\) −10.8745 18.8352i −0.437083 0.757051i 0.560380 0.828236i \(-0.310655\pi\)
−0.997463 + 0.0711852i \(0.977322\pi\)
\(620\) 6.00000 + 10.3923i 0.240966 + 0.417365i
\(621\) 3.82288 6.62141i 0.153407 0.265708i
\(622\) 16.9373 0.679122
\(623\) −1.40588 2.43506i −0.0563254 0.0975585i
\(624\) 1.00000 0.0400320
\(625\) 4.14575 7.18065i 0.165830 0.287226i
\(626\) −14.5830 25.2585i −0.582854 1.00953i
\(627\) 11.6144 + 20.1167i 0.463834 + 0.803383i
\(628\) 1.32288 2.29129i 0.0527885 0.0914323i
\(629\) −0.479741 −0.0191285
\(630\) 2.17712 3.77089i 0.0867387 0.150236i
\(631\) −38.4575 −1.53097 −0.765485 0.643454i \(-0.777501\pi\)
−0.765485 + 0.643454i \(0.777501\pi\)
\(632\) −5.00000 + 8.66025i −0.198889 + 0.344486i
\(633\) 5.82288 + 10.0855i 0.231439 + 0.400863i
\(634\) −1.35425 2.34563i −0.0537841 0.0931568i
\(635\) −13.3542 + 23.1302i −0.529947 + 0.917895i
\(636\) −3.00000 −0.118958
\(637\) −3.50000 6.06218i −0.138675 0.240192i
\(638\) −29.2288 −1.15718
\(639\) −2.85425 + 4.94370i −0.112912 + 0.195570i
\(640\) 0.822876 + 1.42526i 0.0325270 + 0.0563384i
\(641\) 21.2915 + 36.8780i 0.840964 + 1.45659i 0.889081 + 0.457750i \(0.151345\pi\)
−0.0481170 + 0.998842i \(0.515322\pi\)
\(642\) −6.00000 + 10.3923i −0.236801 + 0.410152i
\(643\) 20.8745 0.823210 0.411605 0.911362i \(-0.364968\pi\)
0.411605 + 0.911362i \(0.364968\pi\)
\(644\) 10.1144 17.5186i 0.398562 0.690330i
\(645\) 8.70850 0.342897
\(646\) −3.38562 + 5.86407i −0.133206 + 0.230719i
\(647\) 18.8745 + 32.6916i 0.742033 + 1.28524i 0.951568 + 0.307438i \(0.0994718\pi\)
−0.209535 + 0.977801i \(0.567195\pi\)
\(648\) 0.500000 + 0.866025i 0.0196419 + 0.0340207i
\(649\) 18.4373 31.9343i 0.723726 1.25353i
\(650\) 2.29150 0.0898801
\(651\) 9.64575 + 16.7069i 0.378047 + 0.654796i
\(652\) 23.5830 0.923582
\(653\) −6.00000 + 10.3923i −0.234798 + 0.406682i −0.959214 0.282681i \(-0.908776\pi\)
0.724416 + 0.689363i \(0.242110\pi\)
\(654\) −2.00000 3.46410i −0.0782062 0.135457i
\(655\) 4.06275 + 7.03688i 0.158745 + 0.274954i
\(656\) 3.82288 6.62141i 0.149258 0.258523i
\(657\) −8.35425 −0.325930
\(658\) −7.93725 −0.309426
\(659\) −1.06275 −0.0413987 −0.0206994 0.999786i \(-0.506589\pi\)
−0.0206994 + 0.999786i \(0.506589\pi\)
\(660\) 3.82288 6.62141i 0.148805 0.257738i
\(661\) 10.7601 + 18.6371i 0.418521 + 0.724899i 0.995791 0.0916543i \(-0.0292155\pi\)
−0.577270 + 0.816553i \(0.695882\pi\)
\(662\) 16.2915 + 28.2177i 0.633187 + 1.09671i
\(663\) 0.677124 1.17281i 0.0262973 0.0455483i
\(664\) 2.70850 0.105110
\(665\) 21.7712 0.844253
\(666\) −0.354249 −0.0137269
\(667\) −24.0516 + 41.6586i −0.931283 + 1.61303i
\(668\) −12.4373 21.5420i −0.481212 0.833483i
\(669\) −8.26013 14.3070i −0.319355 0.553139i
\(670\) −11.1771 + 19.3593i −0.431810 + 0.747917i
\(671\) −18.2915 −0.706136
\(672\) 1.32288 + 2.29129i 0.0510310 + 0.0883883i
\(673\) 14.5830 0.562134 0.281067 0.959688i \(-0.409312\pi\)
0.281067 + 0.959688i \(0.409312\pi\)
\(674\) 2.79150 4.83502i 0.107525 0.186238i
\(675\) 1.14575 + 1.98450i 0.0441000 + 0.0763834i
\(676\) −0.500000 0.866025i −0.0192308 0.0333087i
\(677\) 11.0830 19.1963i 0.425954 0.737775i −0.570555 0.821260i \(-0.693272\pi\)
0.996509 + 0.0834849i \(0.0266050\pi\)
\(678\) 11.2288 0.431238
\(679\) 19.7601 34.2255i 0.758324 1.31346i
\(680\) 2.22876 0.0854689
\(681\) 7.64575 13.2428i 0.292986 0.507466i
\(682\) 16.9373 + 29.3362i 0.648561 + 1.12334i
\(683\) −4.35425 7.54178i −0.166611 0.288578i 0.770615 0.637300i \(-0.219949\pi\)
−0.937226 + 0.348722i \(0.886616\pi\)
\(684\) −2.50000 + 4.33013i −0.0955899 + 0.165567i
\(685\) 28.8340 1.10169
\(686\) 9.26013 16.0390i 0.353553 0.612372i
\(687\) −26.4575 −1.00942
\(688\) −2.64575 + 4.58258i −0.100868 + 0.174709i
\(689\) 1.50000 + 2.59808i 0.0571454 + 0.0989788i
\(690\) −6.29150 10.8972i −0.239513 0.414849i
\(691\) −17.0203 + 29.4800i −0.647481 + 1.12147i 0.336241 + 0.941776i \(0.390844\pi\)
−0.983722 + 0.179694i \(0.942489\pi\)
\(692\) −11.7085 −0.445090
\(693\) 6.14575 10.6448i 0.233458 0.404361i
\(694\) 26.2288 0.995630
\(695\) −3.47974 + 6.02709i −0.131994 + 0.228620i
\(696\) −3.14575 5.44860i −0.119239 0.206529i
\(697\) −5.17712 8.96704i −0.196098 0.339651i
\(698\) 1.53137 2.65242i 0.0579633 0.100395i
\(699\) −4.64575 −0.175718
\(700\) 3.03137 + 5.25049i 0.114575 + 0.198450i
\(701\) 12.0000 0.453234 0.226617 0.973984i \(-0.427233\pi\)
0.226617 + 0.973984i \(0.427233\pi\)
\(702\) 0.500000 0.866025i 0.0188713 0.0326860i
\(703\) −0.885622 1.53394i −0.0334019 0.0578537i
\(704\) 2.32288 + 4.02334i 0.0875467 + 0.151635i
\(705\) −2.46863 + 4.27579i −0.0929739 + 0.161035i
\(706\) −0.583005 −0.0219417
\(707\) 0 0
\(708\) 7.93725 0.298300
\(709\) −21.7601 + 37.6897i −0.817219 + 1.41546i 0.0905049 + 0.995896i \(0.471152\pi\)
−0.907724 + 0.419569i \(0.862181\pi\)
\(710\) 4.69738 + 8.13611i 0.176290 + 0.305343i
\(711\) 5.00000 + 8.66025i 0.187515 + 0.324785i
\(712\) 0.531373 0.920365i 0.0199140 0.0344921i
\(713\) 55.7490 2.08782
\(714\) 3.58301 0.134091
\(715\) −7.64575 −0.285935
\(716\) 3.00000 5.19615i 0.112115 0.194189i
\(717\) −1.50000 2.59808i −0.0560185 0.0970269i
\(718\) −3.00000 5.19615i −0.111959 0.193919i
\(719\) −11.7085 + 20.2797i −0.436653 + 0.756306i −0.997429 0.0716621i \(-0.977170\pi\)
0.560776 + 0.827968i \(0.310503\pi\)
\(720\) 1.64575 0.0613335
\(721\) −7.00000 12.1244i −0.260694 0.451535i
\(722\) −6.00000 −0.223297
\(723\) −8.93725 + 15.4798i −0.332380 + 0.575699i
\(724\) −4.67712 8.10102i −0.173824 0.301072i
\(725\) −7.20850 12.4855i −0.267717 0.463699i
\(726\) 5.29150 9.16515i 0.196386 0.340151i
\(727\) 36.4575 1.35213 0.676067 0.736840i \(-0.263683\pi\)
0.676067 + 0.736840i \(0.263683\pi\)
\(728\) 1.32288 2.29129i 0.0490290 0.0849208i
\(729\) 1.00000 0.0370370
\(730\) −6.87451 + 11.9070i −0.254437 + 0.440698i
\(731\) 3.58301 + 6.20595i 0.132522 + 0.229535i
\(732\) −1.96863 3.40976i −0.0727625 0.126028i
\(733\) 6.11438 10.5904i 0.225840 0.391166i −0.730731 0.682665i \(-0.760821\pi\)
0.956571 + 0.291499i \(0.0941541\pi\)
\(734\) −20.5830 −0.759733
\(735\) −5.76013 9.97684i −0.212466 0.368001i
\(736\) 7.64575 0.281826
\(737\) −31.5516 + 54.6490i −1.16222 + 2.01302i
\(738\) −3.82288 6.62141i −0.140722 0.243738i
\(739\) 3.35425 + 5.80973i 0.123388 + 0.213714i 0.921102 0.389322i \(-0.127291\pi\)
−0.797714 + 0.603036i \(0.793957\pi\)
\(740\) −0.291503 + 0.504897i −0.0107158 + 0.0185604i
\(741\) 5.00000 0.183680
\(742\) −3.96863 + 6.87386i −0.145693 + 0.252347i
\(743\) 1.45751 0.0534710 0.0267355 0.999643i \(-0.491489\pi\)
0.0267355 + 0.999643i \(0.491489\pi\)
\(744\) −3.64575 + 6.31463i −0.133660 + 0.231505i
\(745\) 18.8745 + 32.6916i 0.691508 + 1.19773i
\(746\) 4.67712 + 8.10102i 0.171242 + 0.296599i
\(747\) 1.35425 2.34563i 0.0495494 0.0858220i
\(748\) 6.29150 0.230040
\(749\) 15.8745 + 27.4955i 0.580042 + 1.00466i
\(750\) 12.0000 0.438178
\(751\) −4.58301 + 7.93800i −0.167236 + 0.289662i −0.937447 0.348128i \(-0.886818\pi\)
0.770211 + 0.637789i \(0.220151\pi\)
\(752\) −1.50000 2.59808i −0.0546994 0.0947421i
\(753\) 1.35425 + 2.34563i 0.0493516 + 0.0854794i
\(754\) −3.14575 + 5.44860i −0.114562 + 0.198426i
\(755\) 36.1033 1.31393
\(756\) 2.64575 0.0962250
\(757\) 21.3542 0.776133 0.388067 0.921631i \(-0.373143\pi\)
0.388067 + 0.921631i \(0.373143\pi\)
\(758\) 16.5830 28.7226i 0.602322 1.04325i
\(759\) −17.7601 30.7614i −0.644652 1.11657i
\(760\) 4.11438 + 7.12631i 0.149244 + 0.258499i
\(761\) 1.64575 2.85052i 0.0596584 0.103331i −0.834654 0.550775i \(-0.814332\pi\)
0.894312 + 0.447444i \(0.147666\pi\)
\(762\) −16.2288 −0.587906
\(763\) −10.5830 −0.383131
\(764\) 0 0
\(765\) 1.11438 1.93016i 0.0402904 0.0697851i
\(766\) −18.8745 32.6916i −0.681964 1.18120i
\(767\) −3.96863 6.87386i −0.143299 0.248201i
\(768\) −0.500000 + 0.866025i −0.0180422 + 0.0312500i
\(769\) 0.354249 0.0127745 0.00638727 0.999980i \(-0.497967\pi\)
0.00638727 + 0.999980i \(0.497967\pi\)
\(770\) −10.1144 17.5186i −0.364497 0.631327i
\(771\) 15.8745 0.571706
\(772\) −1.53137 + 2.65242i −0.0551153 + 0.0954625i
\(773\) 22.1660 + 38.3927i