Properties

Label 544.2.bb.d.321.3
Level $544$
Weight $2$
Character 544.321
Analytic conductor $4.344$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [544,2,Mod(161,544)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("544.161"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(544, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 544 = 2^{5} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 544.bb (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,8,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.34386186996\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 8 x^{15} + 28 x^{14} - 36 x^{13} - 28 x^{12} + 20 x^{11} + 644 x^{10} - 2244 x^{9} + \cdots + 1394 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 321.3
Root \(0.900800 - 0.239491i\) of defining polynomial
Character \(\chi\) \(=\) 544.321
Dual form 544.2.bb.d.161.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.433184 + 1.04580i) q^{3} +(2.16830 - 0.898138i) q^{5} +(-3.20687 - 1.32833i) q^{7} +(1.21528 - 1.21528i) q^{9} +(2.05797 - 4.96839i) q^{11} +0.828427i q^{13} +(1.87854 + 1.87854i) q^{15} +(3.79779 - 1.60525i) q^{17} +(-1.01217 - 1.01217i) q^{19} -3.92915i q^{21} +(0.316155 - 0.763265i) q^{23} +(0.359330 - 0.359330i) q^{25} +(4.93476 + 2.04405i) q^{27} +(-3.47274 + 1.43846i) q^{29} +(3.20687 + 7.74207i) q^{31} +6.08741 q^{33} -8.14648 q^{35} +(-1.37879 - 3.32869i) q^{37} +(-0.866367 + 0.358861i) q^{39} +(10.1101 + 4.18776i) q^{41} +(-9.11795 + 9.11795i) q^{43} +(1.54359 - 3.72657i) q^{45} -3.75708i q^{47} +(3.56982 + 3.56982i) q^{49} +(3.32390 + 3.27635i) q^{51} +(-5.17620 - 5.17620i) q^{53} -12.6213i q^{55} +(0.620073 - 1.49699i) q^{57} +(5.86838 - 5.86838i) q^{59} +(-2.27807 - 0.943606i) q^{61} +(-5.51152 + 2.28295i) q^{63} +(0.744042 + 1.79628i) q^{65} +8.93145 q^{67} +0.935174 q^{69} +(5.29847 + 12.7916i) q^{71} +(-1.86750 + 0.773543i) q^{73} +(0.531442 + 0.220130i) q^{75} +(-13.1993 + 13.1993i) q^{77} +(3.56573 - 8.60844i) q^{79} +0.890232i q^{81} +(-3.20203 - 3.20203i) q^{83} +(6.79300 - 6.89159i) q^{85} +(-3.00867 - 3.00867i) q^{87} -0.313491i q^{89} +(1.10042 - 2.65666i) q^{91} +(-6.70748 + 6.70748i) q^{93} +(-3.10377 - 1.28562i) q^{95} +(-11.5908 + 4.80106i) q^{97} +(-3.53695 - 8.53896i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{5} - 8 q^{17} - 24 q^{25} + 8 q^{29} - 32 q^{33} + 56 q^{37} + 56 q^{41} + 72 q^{45} - 24 q^{49} - 56 q^{53} + 8 q^{57} - 24 q^{61} + 16 q^{65} + 64 q^{69} + 8 q^{73} - 88 q^{77} + 8 q^{85}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/544\mathbb{Z}\right)^\times\).

\(n\) \(69\) \(511\) \(513\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.433184 + 1.04580i 0.250099 + 0.603792i 0.998212 0.0597799i \(-0.0190399\pi\)
−0.748113 + 0.663571i \(0.769040\pi\)
\(4\) 0 0
\(5\) 2.16830 0.898138i 0.969692 0.401660i 0.159095 0.987263i \(-0.449142\pi\)
0.810598 + 0.585604i \(0.199142\pi\)
\(6\) 0 0
\(7\) −3.20687 1.32833i −1.21208 0.502061i −0.317199 0.948359i \(-0.602742\pi\)
−0.894885 + 0.446297i \(0.852742\pi\)
\(8\) 0 0
\(9\) 1.21528 1.21528i 0.405092 0.405092i
\(10\) 0 0
\(11\) 2.05797 4.96839i 0.620502 1.49802i −0.230613 0.973046i \(-0.574073\pi\)
0.851115 0.524979i \(-0.175927\pi\)
\(12\) 0 0
\(13\) 0.828427i 0.229764i 0.993379 + 0.114882i \(0.0366490\pi\)
−0.993379 + 0.114882i \(0.963351\pi\)
\(14\) 0 0
\(15\) 1.87854 + 1.87854i 0.485037 + 0.485037i
\(16\) 0 0
\(17\) 3.79779 1.60525i 0.921099 0.389329i
\(18\) 0 0
\(19\) −1.01217 1.01217i −0.232209 0.232209i 0.581405 0.813614i \(-0.302503\pi\)
−0.813614 + 0.581405i \(0.802503\pi\)
\(20\) 0 0
\(21\) 3.92915i 0.857411i
\(22\) 0 0
\(23\) 0.316155 0.763265i 0.0659228 0.159152i −0.887485 0.460837i \(-0.847549\pi\)
0.953408 + 0.301685i \(0.0975492\pi\)
\(24\) 0 0
\(25\) 0.359330 0.359330i 0.0718659 0.0718659i
\(26\) 0 0
\(27\) 4.93476 + 2.04405i 0.949696 + 0.393377i
\(28\) 0 0
\(29\) −3.47274 + 1.43846i −0.644872 + 0.267115i −0.681057 0.732230i \(-0.738479\pi\)
0.0361848 + 0.999345i \(0.488479\pi\)
\(30\) 0 0
\(31\) 3.20687 + 7.74207i 0.575971 + 1.39052i 0.896400 + 0.443245i \(0.146173\pi\)
−0.320429 + 0.947272i \(0.603827\pi\)
\(32\) 0 0
\(33\) 6.08741 1.05968
\(34\) 0 0
\(35\) −8.14648 −1.37701
\(36\) 0 0
\(37\) −1.37879 3.32869i −0.226671 0.547233i 0.769097 0.639132i \(-0.220706\pi\)
−0.995768 + 0.0918989i \(0.970706\pi\)
\(38\) 0 0
\(39\) −0.866367 + 0.358861i −0.138730 + 0.0574638i
\(40\) 0 0
\(41\) 10.1101 + 4.18776i 1.57894 + 0.654018i 0.988245 0.152878i \(-0.0488543\pi\)
0.590693 + 0.806896i \(0.298854\pi\)
\(42\) 0 0
\(43\) −9.11795 + 9.11795i −1.39047 + 1.39047i −0.566222 + 0.824253i \(0.691596\pi\)
−0.824253 + 0.566222i \(0.808404\pi\)
\(44\) 0 0
\(45\) 1.54359 3.72657i 0.230105 0.555524i
\(46\) 0 0
\(47\) 3.75708i 0.548027i −0.961726 0.274014i \(-0.911649\pi\)
0.961726 0.274014i \(-0.0883513\pi\)
\(48\) 0 0
\(49\) 3.56982 + 3.56982i 0.509974 + 0.509974i
\(50\) 0 0
\(51\) 3.32390 + 3.27635i 0.465439 + 0.458781i
\(52\) 0 0
\(53\) −5.17620 5.17620i −0.711006 0.711006i 0.255739 0.966746i \(-0.417681\pi\)
−0.966746 + 0.255739i \(0.917681\pi\)
\(54\) 0 0
\(55\) 12.6213i 1.70185i
\(56\) 0 0
\(57\) 0.620073 1.49699i 0.0821306 0.198281i
\(58\) 0 0
\(59\) 5.86838 5.86838i 0.763997 0.763997i −0.213045 0.977042i \(-0.568338\pi\)
0.977042 + 0.213045i \(0.0683381\pi\)
\(60\) 0 0
\(61\) −2.27807 0.943606i −0.291676 0.120816i 0.232047 0.972705i \(-0.425458\pi\)
−0.523724 + 0.851888i \(0.675458\pi\)
\(62\) 0 0
\(63\) −5.51152 + 2.28295i −0.694386 + 0.287624i
\(64\) 0 0
\(65\) 0.744042 + 1.79628i 0.0922871 + 0.222801i
\(66\) 0 0
\(67\) 8.93145 1.09115 0.545575 0.838062i \(-0.316311\pi\)
0.545575 + 0.838062i \(0.316311\pi\)
\(68\) 0 0
\(69\) 0.935174 0.112582
\(70\) 0 0
\(71\) 5.29847 + 12.7916i 0.628812 + 1.51809i 0.841100 + 0.540880i \(0.181909\pi\)
−0.212287 + 0.977207i \(0.568091\pi\)
\(72\) 0 0
\(73\) −1.86750 + 0.773543i −0.218574 + 0.0905364i −0.489284 0.872125i \(-0.662742\pi\)
0.270709 + 0.962661i \(0.412742\pi\)
\(74\) 0 0
\(75\) 0.531442 + 0.220130i 0.0613656 + 0.0254185i
\(76\) 0 0
\(77\) −13.1993 + 13.1993i −1.50420 + 1.50420i
\(78\) 0 0
\(79\) 3.56573 8.60844i 0.401176 0.968525i −0.586205 0.810163i \(-0.699379\pi\)
0.987381 0.158362i \(-0.0506214\pi\)
\(80\) 0 0
\(81\) 0.890232i 0.0989147i
\(82\) 0 0
\(83\) −3.20203 3.20203i −0.351468 0.351468i 0.509187 0.860656i \(-0.329946\pi\)
−0.860656 + 0.509187i \(0.829946\pi\)
\(84\) 0 0
\(85\) 6.79300 6.89159i 0.736805 0.747498i
\(86\) 0 0
\(87\) −3.00867 3.00867i −0.322563 0.322563i
\(88\) 0 0
\(89\) 0.313491i 0.0332300i −0.999862 0.0166150i \(-0.994711\pi\)
0.999862 0.0166150i \(-0.00528896\pi\)
\(90\) 0 0
\(91\) 1.10042 2.65666i 0.115356 0.278494i
\(92\) 0 0
\(93\) −6.70748 + 6.70748i −0.695533 + 0.695533i
\(94\) 0 0
\(95\) −3.10377 1.28562i −0.318440 0.131902i
\(96\) 0 0
\(97\) −11.5908 + 4.80106i −1.17687 + 0.487474i −0.883457 0.468513i \(-0.844790\pi\)
−0.293410 + 0.955987i \(0.594790\pi\)
\(98\) 0 0
\(99\) −3.53695 8.53896i −0.355477 0.858198i
\(100\) 0 0
\(101\) −11.1492 −1.10939 −0.554694 0.832054i \(-0.687165\pi\)
−0.554694 + 0.832054i \(0.687165\pi\)
\(102\) 0 0
\(103\) 4.18319 0.412182 0.206091 0.978533i \(-0.433926\pi\)
0.206091 + 0.978533i \(0.433926\pi\)
\(104\) 0 0
\(105\) −3.52892 8.51957i −0.344387 0.831425i
\(106\) 0 0
\(107\) −11.1284 + 4.60952i −1.07582 + 0.445620i −0.849041 0.528327i \(-0.822820\pi\)
−0.226780 + 0.973946i \(0.572820\pi\)
\(108\) 0 0
\(109\) 2.16830 + 0.898138i 0.207685 + 0.0860261i 0.484101 0.875012i \(-0.339147\pi\)
−0.276416 + 0.961038i \(0.589147\pi\)
\(110\) 0 0
\(111\) 2.88387 2.88387i 0.273725 0.273725i
\(112\) 0 0
\(113\) −7.90642 + 19.0878i −0.743773 + 1.79563i −0.153978 + 0.988074i \(0.549208\pi\)
−0.589795 + 0.807553i \(0.700792\pi\)
\(114\) 0 0
\(115\) 1.93894i 0.180807i
\(116\) 0 0
\(117\) 1.00677 + 1.00677i 0.0930757 + 0.0930757i
\(118\) 0 0
\(119\) −14.3113 + 0.103102i −1.31192 + 0.00945132i
\(120\) 0 0
\(121\) −12.6714 12.6714i −1.15195 1.15195i
\(122\) 0 0
\(123\) 12.3872i 1.11692i
\(124\) 0 0
\(125\) −4.03429 + 9.73963i −0.360838 + 0.871139i
\(126\) 0 0
\(127\) −5.33432 + 5.33432i −0.473345 + 0.473345i −0.902995 0.429651i \(-0.858637\pi\)
0.429651 + 0.902995i \(0.358637\pi\)
\(128\) 0 0
\(129\) −13.4853 5.58579i −1.18731 0.491801i
\(130\) 0 0
\(131\) 3.88897 1.61086i 0.339780 0.140742i −0.206267 0.978496i \(-0.566132\pi\)
0.546048 + 0.837754i \(0.316132\pi\)
\(132\) 0 0
\(133\) 1.90141 + 4.59042i 0.164873 + 0.398040i
\(134\) 0 0
\(135\) 12.5359 1.07892
\(136\) 0 0
\(137\) 6.60889 0.564636 0.282318 0.959321i \(-0.408897\pi\)
0.282318 + 0.959321i \(0.408897\pi\)
\(138\) 0 0
\(139\) −1.50575 3.63521i −0.127716 0.308335i 0.847068 0.531485i \(-0.178366\pi\)
−0.974784 + 0.223150i \(0.928366\pi\)
\(140\) 0 0
\(141\) 3.92915 1.62751i 0.330894 0.137061i
\(142\) 0 0
\(143\) 4.11595 + 1.70488i 0.344193 + 0.142569i
\(144\) 0 0
\(145\) −6.23801 + 6.23801i −0.518038 + 0.518038i
\(146\) 0 0
\(147\) −2.18692 + 5.27970i −0.180374 + 0.435462i
\(148\) 0 0
\(149\) 7.14921i 0.585686i 0.956161 + 0.292843i \(0.0946014\pi\)
−0.956161 + 0.292843i \(0.905399\pi\)
\(150\) 0 0
\(151\) 11.1551 + 11.1551i 0.907793 + 0.907793i 0.996094 0.0883007i \(-0.0281436\pi\)
−0.0883007 + 0.996094i \(0.528144\pi\)
\(152\) 0 0
\(153\) 2.66454 6.56617i 0.215416 0.530844i
\(154\) 0 0
\(155\) 13.9069 + 13.9069i 1.11703 + 1.11703i
\(156\) 0 0
\(157\) 5.78973i 0.462071i −0.972945 0.231035i \(-0.925789\pi\)
0.972945 0.231035i \(-0.0742113\pi\)
\(158\) 0 0
\(159\) 3.17102 7.65551i 0.251478 0.607121i
\(160\) 0 0
\(161\) −2.02774 + 2.02774i −0.159808 + 0.159808i
\(162\) 0 0
\(163\) −8.53896 3.53695i −0.668823 0.277036i 0.0223228 0.999751i \(-0.492894\pi\)
−0.691146 + 0.722715i \(0.742894\pi\)
\(164\) 0 0
\(165\) 13.1993 5.46733i 1.02756 0.425631i
\(166\) 0 0
\(167\) −3.20687 7.74207i −0.248155 0.599100i 0.749892 0.661560i \(-0.230105\pi\)
−0.998047 + 0.0624603i \(0.980105\pi\)
\(168\) 0 0
\(169\) 12.3137 0.947208
\(170\) 0 0
\(171\) −2.46014 −0.188132
\(172\) 0 0
\(173\) 8.21024 + 19.8213i 0.624213 + 1.50698i 0.846713 + 0.532050i \(0.178578\pi\)
−0.222500 + 0.974933i \(0.571422\pi\)
\(174\) 0 0
\(175\) −1.62963 + 0.675016i −0.123189 + 0.0510264i
\(176\) 0 0
\(177\) 8.67922 + 3.59505i 0.652370 + 0.270220i
\(178\) 0 0
\(179\) 4.76926 4.76926i 0.356471 0.356471i −0.506039 0.862510i \(-0.668891\pi\)
0.862510 + 0.506039i \(0.168891\pi\)
\(180\) 0 0
\(181\) 5.65108 13.6429i 0.420042 1.01407i −0.562293 0.826938i \(-0.690081\pi\)
0.982335 0.187132i \(-0.0599193\pi\)
\(182\) 0 0
\(183\) 2.79115i 0.206328i
\(184\) 0 0
\(185\) −5.97925 5.97925i −0.439603 0.439603i
\(186\) 0 0
\(187\) −0.159735 22.1724i −0.0116810 1.62141i
\(188\) 0 0
\(189\) −13.1100 13.1100i −0.953611 0.953611i
\(190\) 0 0
\(191\) 3.62259i 0.262122i 0.991374 + 0.131061i \(0.0418383\pi\)
−0.991374 + 0.131061i \(0.958162\pi\)
\(192\) 0 0
\(193\) −6.89965 + 16.6572i −0.496648 + 1.19901i 0.454631 + 0.890680i \(0.349771\pi\)
−0.951278 + 0.308333i \(0.900229\pi\)
\(194\) 0 0
\(195\) −1.55624 + 1.55624i −0.111444 + 0.111444i
\(196\) 0 0
\(197\) −13.5760 5.62335i −0.967247 0.400647i −0.157561 0.987509i \(-0.550363\pi\)
−0.809687 + 0.586862i \(0.800363\pi\)
\(198\) 0 0
\(199\) −18.8534 + 7.80932i −1.33648 + 0.553588i −0.932497 0.361179i \(-0.882374\pi\)
−0.403983 + 0.914767i \(0.632374\pi\)
\(200\) 0 0
\(201\) 3.86896 + 9.34048i 0.272895 + 0.658827i
\(202\) 0 0
\(203\) 13.0474 0.915747
\(204\) 0 0
\(205\) 25.6830 1.79378
\(206\) 0 0
\(207\) −0.543363 1.31179i −0.0377663 0.0911759i
\(208\) 0 0
\(209\) −7.11190 + 2.94585i −0.491941 + 0.203768i
\(210\) 0 0
\(211\) 0.998248 + 0.413488i 0.0687222 + 0.0284657i 0.416780 0.909007i \(-0.363159\pi\)
−0.348058 + 0.937473i \(0.613159\pi\)
\(212\) 0 0
\(213\) −11.0822 + 11.0822i −0.759343 + 0.759343i
\(214\) 0 0
\(215\) −11.5813 + 27.9596i −0.789835 + 1.90683i
\(216\) 0 0
\(217\) 29.0876i 1.97460i
\(218\) 0 0
\(219\) −1.61794 1.61794i −0.109330 0.109330i
\(220\) 0 0
\(221\) 1.32983 + 3.14619i 0.0894540 + 0.211636i
\(222\) 0 0
\(223\) 6.98566 + 6.98566i 0.467794 + 0.467794i 0.901199 0.433405i \(-0.142688\pi\)
−0.433405 + 0.901199i \(0.642688\pi\)
\(224\) 0 0
\(225\) 0.873369i 0.0582246i
\(226\) 0 0
\(227\) −5.77436 + 13.9405i −0.383258 + 0.925266i 0.608074 + 0.793880i \(0.291942\pi\)
−0.991331 + 0.131385i \(0.958058\pi\)
\(228\) 0 0
\(229\) 15.6233 15.6233i 1.03242 1.03242i 0.0329608 0.999457i \(-0.489506\pi\)
0.999457 0.0329608i \(-0.0104936\pi\)
\(230\) 0 0
\(231\) −19.5215 8.08608i −1.28442 0.532025i
\(232\) 0 0
\(233\) −7.61315 + 3.15347i −0.498754 + 0.206591i −0.617856 0.786291i \(-0.711999\pi\)
0.119102 + 0.992882i \(0.461999\pi\)
\(234\) 0 0
\(235\) −3.37438 8.14648i −0.220120 0.531418i
\(236\) 0 0
\(237\) 10.5473 0.685121
\(238\) 0 0
\(239\) 10.5115 0.679934 0.339967 0.940437i \(-0.389584\pi\)
0.339967 + 0.940437i \(0.389584\pi\)
\(240\) 0 0
\(241\) −6.94298 16.7618i −0.447237 1.07972i −0.973353 0.229312i \(-0.926352\pi\)
0.526116 0.850413i \(-0.323648\pi\)
\(242\) 0 0
\(243\) 13.8733 5.74650i 0.889972 0.368638i
\(244\) 0 0
\(245\) 10.9466 + 4.53424i 0.699354 + 0.289682i
\(246\) 0 0
\(247\) 0.838513 0.838513i 0.0533533 0.0533533i
\(248\) 0 0
\(249\) 1.96161 4.73574i 0.124312 0.300115i
\(250\) 0 0
\(251\) 1.87169i 0.118140i −0.998254 0.0590701i \(-0.981186\pi\)
0.998254 0.0590701i \(-0.0188135\pi\)
\(252\) 0 0
\(253\) −3.14156 3.14156i −0.197508 0.197508i
\(254\) 0 0
\(255\) 10.1498 + 4.11878i 0.635607 + 0.257928i
\(256\) 0 0
\(257\) 7.53377 + 7.53377i 0.469944 + 0.469944i 0.901896 0.431953i \(-0.142175\pi\)
−0.431953 + 0.901896i \(0.642175\pi\)
\(258\) 0 0
\(259\) 12.5062i 0.777095i
\(260\) 0 0
\(261\) −2.47222 + 5.96846i −0.153026 + 0.369439i
\(262\) 0 0
\(263\) 22.3450 22.3450i 1.37785 1.37785i 0.529612 0.848240i \(-0.322338\pi\)
0.848240 0.529612i \(-0.177662\pi\)
\(264\) 0 0
\(265\) −15.8725 6.57461i −0.975040 0.403875i
\(266\) 0 0
\(267\) 0.327848 0.135799i 0.0200640 0.00831077i
\(268\) 0 0
\(269\) 9.33332 + 22.5326i 0.569063 + 1.37384i 0.902346 + 0.431012i \(0.141843\pi\)
−0.333284 + 0.942827i \(0.608157\pi\)
\(270\) 0 0
\(271\) −27.6373 −1.67885 −0.839424 0.543478i \(-0.817107\pi\)
−0.839424 + 0.543478i \(0.817107\pi\)
\(272\) 0 0
\(273\) 3.25501 0.197002
\(274\) 0 0
\(275\) −1.04580 2.52478i −0.0630640 0.152250i
\(276\) 0 0
\(277\) 21.4662 8.89159i 1.28978 0.534244i 0.370859 0.928689i \(-0.379063\pi\)
0.918919 + 0.394445i \(0.129063\pi\)
\(278\) 0 0
\(279\) 13.3060 + 5.51152i 0.796609 + 0.329966i
\(280\) 0 0
\(281\) −2.98205 + 2.98205i −0.177894 + 0.177894i −0.790437 0.612543i \(-0.790147\pi\)
0.612543 + 0.790437i \(0.290147\pi\)
\(282\) 0 0
\(283\) 1.49291 3.60420i 0.0887442 0.214247i −0.873276 0.487226i \(-0.838009\pi\)
0.962020 + 0.272979i \(0.0880088\pi\)
\(284\) 0 0
\(285\) 3.80283i 0.225260i
\(286\) 0 0
\(287\) −26.8592 26.8592i −1.58545 1.58545i
\(288\) 0 0
\(289\) 11.8464 12.1928i 0.696846 0.717221i
\(290\) 0 0
\(291\) −10.0419 10.0419i −0.588665 0.588665i
\(292\) 0 0
\(293\) 2.47602i 0.144651i 0.997381 + 0.0723253i \(0.0230420\pi\)
−0.997381 + 0.0723253i \(0.976958\pi\)
\(294\) 0 0
\(295\) 7.45377 17.9950i 0.433975 1.04771i
\(296\) 0 0
\(297\) 20.3112 20.3112i 1.17858 1.17858i
\(298\) 0 0
\(299\) 0.632310 + 0.261911i 0.0365674 + 0.0151467i
\(300\) 0 0
\(301\) 41.3518 17.1285i 2.38348 0.987268i
\(302\) 0 0
\(303\) −4.82965 11.6598i −0.277456 0.669839i
\(304\) 0 0
\(305\) −5.78701 −0.331363
\(306\) 0 0
\(307\) 22.1895 1.26642 0.633211 0.773979i \(-0.281737\pi\)
0.633211 + 0.773979i \(0.281737\pi\)
\(308\) 0 0
\(309\) 1.81209 + 4.37477i 0.103086 + 0.248872i
\(310\) 0 0
\(311\) 23.3720 9.68101i 1.32531 0.548960i 0.395993 0.918253i \(-0.370400\pi\)
0.929313 + 0.369294i \(0.120400\pi\)
\(312\) 0 0
\(313\) 11.1444 + 4.61617i 0.629920 + 0.260921i 0.674719 0.738075i \(-0.264265\pi\)
−0.0447990 + 0.998996i \(0.514265\pi\)
\(314\) 0 0
\(315\) −9.90022 + 9.90022i −0.557814 + 0.557814i
\(316\) 0 0
\(317\) 1.04874 2.53189i 0.0589032 0.142205i −0.891688 0.452651i \(-0.850478\pi\)
0.950591 + 0.310446i \(0.100478\pi\)
\(318\) 0 0
\(319\) 20.2142i 1.13178i
\(320\) 0 0
\(321\) −9.64126 9.64126i −0.538123 0.538123i
\(322\) 0 0
\(323\) −5.46881 2.21924i −0.304293 0.123482i
\(324\) 0 0
\(325\) 0.297678 + 0.297678i 0.0165122 + 0.0165122i
\(326\) 0 0
\(327\) 2.65666i 0.146914i
\(328\) 0 0
\(329\) −4.99065 + 12.0485i −0.275143 + 0.664255i
\(330\) 0 0
\(331\) −12.7799 + 12.7799i −0.702449 + 0.702449i −0.964936 0.262487i \(-0.915457\pi\)
0.262487 + 0.964936i \(0.415457\pi\)
\(332\) 0 0
\(333\) −5.72088 2.36967i −0.313502 0.129857i
\(334\) 0 0
\(335\) 19.3660 8.02167i 1.05808 0.438271i
\(336\) 0 0
\(337\) 7.73463 + 18.6730i 0.421332 + 1.01719i 0.981955 + 0.189114i \(0.0605616\pi\)
−0.560623 + 0.828071i \(0.689438\pi\)
\(338\) 0 0
\(339\) −23.3869 −1.27020
\(340\) 0 0
\(341\) 45.0653 2.44042
\(342\) 0 0
\(343\) 2.59225 + 6.25825i 0.139968 + 0.337914i
\(344\) 0 0
\(345\) 2.02774 0.839916i 0.109170 0.0452196i
\(346\) 0 0
\(347\) −31.6311 13.1020i −1.69804 0.703353i −0.698124 0.715976i \(-0.745982\pi\)
−0.999920 + 0.0126233i \(0.995982\pi\)
\(348\) 0 0
\(349\) −18.2018 + 18.2018i −0.974320 + 0.974320i −0.999678 0.0253582i \(-0.991927\pi\)
0.0253582 + 0.999678i \(0.491927\pi\)
\(350\) 0 0
\(351\) −1.69334 + 4.08809i −0.0903840 + 0.218206i
\(352\) 0 0
\(353\) 17.6506i 0.939447i −0.882814 0.469724i \(-0.844354\pi\)
0.882814 0.469724i \(-0.155646\pi\)
\(354\) 0 0
\(355\) 22.9773 + 22.9773i 1.21951 + 1.21951i
\(356\) 0 0
\(357\) −6.30725 14.9221i −0.333815 0.789760i
\(358\) 0 0
\(359\) 15.2432 + 15.2432i 0.804507 + 0.804507i 0.983796 0.179289i \(-0.0573797\pi\)
−0.179289 + 0.983796i \(0.557380\pi\)
\(360\) 0 0
\(361\) 16.9510i 0.892158i
\(362\) 0 0
\(363\) 7.76269 18.7408i 0.407436 0.983637i
\(364\) 0 0
\(365\) −3.35454 + 3.35454i −0.175585 + 0.175585i
\(366\) 0 0
\(367\) 28.2251 + 11.6912i 1.47334 + 0.610276i 0.967617 0.252422i \(-0.0812271\pi\)
0.505719 + 0.862698i \(0.331227\pi\)
\(368\) 0 0
\(369\) 17.3759 7.19733i 0.904552 0.374678i
\(370\) 0 0
\(371\) 9.72372 + 23.4751i 0.504830 + 1.21877i
\(372\) 0 0
\(373\) −6.56695 −0.340024 −0.170012 0.985442i \(-0.554381\pi\)
−0.170012 + 0.985442i \(0.554381\pi\)
\(374\) 0 0
\(375\) −11.9333 −0.616231
\(376\) 0 0
\(377\) −1.19166 2.87692i −0.0613735 0.148169i
\(378\) 0 0
\(379\) −7.20579 + 2.98474i −0.370136 + 0.153316i −0.559995 0.828496i \(-0.689197\pi\)
0.189859 + 0.981811i \(0.439197\pi\)
\(380\) 0 0
\(381\) −7.88936 3.26788i −0.404184 0.167419i
\(382\) 0 0
\(383\) −13.6056 + 13.6056i −0.695214 + 0.695214i −0.963374 0.268160i \(-0.913584\pi\)
0.268160 + 0.963374i \(0.413584\pi\)
\(384\) 0 0
\(385\) −16.7652 + 40.4748i −0.854435 + 2.06279i
\(386\) 0 0
\(387\) 22.1617i 1.12654i
\(388\) 0 0
\(389\) −14.0112 14.0112i −0.710395 0.710395i 0.256223 0.966618i \(-0.417522\pi\)
−0.966618 + 0.256223i \(0.917522\pi\)
\(390\) 0 0
\(391\) −0.0245392 3.40623i −0.00124100 0.172260i
\(392\) 0 0
\(393\) 3.36927 + 3.36927i 0.169957 + 0.169957i
\(394\) 0 0
\(395\) 21.8682i 1.10031i
\(396\) 0 0
\(397\) −12.3266 + 29.7589i −0.618652 + 1.49356i 0.234617 + 0.972088i \(0.424616\pi\)
−0.853269 + 0.521470i \(0.825384\pi\)
\(398\) 0 0
\(399\) −3.97699 + 3.97699i −0.199098 + 0.199098i
\(400\) 0 0
\(401\) −15.7229 6.51265i −0.785165 0.325226i −0.0461672 0.998934i \(-0.514701\pi\)
−0.738998 + 0.673708i \(0.764701\pi\)
\(402\) 0 0
\(403\) −6.41374 + 2.65666i −0.319491 + 0.132338i
\(404\) 0 0
\(405\) 0.799552 + 1.93029i 0.0397300 + 0.0959168i
\(406\) 0 0
\(407\) −19.3757 −0.960419
\(408\) 0 0
\(409\) −28.6315 −1.41574 −0.707868 0.706345i \(-0.750343\pi\)
−0.707868 + 0.706345i \(0.750343\pi\)
\(410\) 0 0
\(411\) 2.86286 + 6.91156i 0.141215 + 0.340922i
\(412\) 0 0
\(413\) −26.6143 + 11.0240i −1.30960 + 0.542455i
\(414\) 0 0
\(415\) −9.81882 4.06709i −0.481987 0.199645i
\(416\) 0 0
\(417\) 3.14943 3.14943i 0.154228 0.154228i
\(418\) 0 0
\(419\) 1.59117 3.84142i 0.0777336 0.187665i −0.880235 0.474537i \(-0.842615\pi\)
0.957969 + 0.286872i \(0.0926154\pi\)
\(420\) 0 0
\(421\) 34.1240i 1.66310i −0.555447 0.831552i \(-0.687453\pi\)
0.555447 0.831552i \(-0.312547\pi\)
\(422\) 0 0
\(423\) −4.56589 4.56589i −0.222001 0.222001i
\(424\) 0 0
\(425\) 0.787845 1.94147i 0.0382161 0.0941751i
\(426\) 0 0
\(427\) 6.05205 + 6.05205i 0.292879 + 0.292879i
\(428\) 0 0
\(429\) 5.04297i 0.243477i
\(430\) 0 0
\(431\) −7.23740 + 17.4726i −0.348614 + 0.841628i 0.648171 + 0.761495i \(0.275534\pi\)
−0.996784 + 0.0801324i \(0.974466\pi\)
\(432\) 0 0
\(433\) −0.558793 + 0.558793i −0.0268539 + 0.0268539i −0.720406 0.693552i \(-0.756045\pi\)
0.693552 + 0.720406i \(0.256045\pi\)
\(434\) 0 0
\(435\) −9.22590 3.82149i −0.442348 0.183227i
\(436\) 0 0
\(437\) −1.09256 + 0.452554i −0.0522643 + 0.0216486i
\(438\) 0 0
\(439\) 5.59008 + 13.4957i 0.266800 + 0.644112i 0.999329 0.0366234i \(-0.0116602\pi\)
−0.732529 + 0.680736i \(0.761660\pi\)
\(440\) 0 0
\(441\) 8.67663 0.413173
\(442\) 0 0
\(443\) −18.7059 −0.888743 −0.444371 0.895843i \(-0.646573\pi\)
−0.444371 + 0.895843i \(0.646573\pi\)
\(444\) 0 0
\(445\) −0.281558 0.679742i −0.0133471 0.0322228i
\(446\) 0 0
\(447\) −7.47663 + 3.09692i −0.353632 + 0.146479i
\(448\) 0 0
\(449\) 19.2318 + 7.96609i 0.907606 + 0.375943i 0.787140 0.616775i \(-0.211561\pi\)
0.120466 + 0.992717i \(0.461561\pi\)
\(450\) 0 0
\(451\) 41.6128 41.6128i 1.95947 1.95947i
\(452\) 0 0
\(453\) −6.83380 + 16.4983i −0.321080 + 0.775156i
\(454\) 0 0
\(455\) 6.74876i 0.316387i
\(456\) 0 0
\(457\) 6.79186 + 6.79186i 0.317710 + 0.317710i 0.847887 0.530177i \(-0.177875\pi\)
−0.530177 + 0.847887i \(0.677875\pi\)
\(458\) 0 0
\(459\) 22.0224 0.158654i 1.02792 0.00740533i
\(460\) 0 0
\(461\) −23.2317 23.2317i −1.08201 1.08201i −0.996322 0.0856848i \(-0.972692\pi\)
−0.0856848 0.996322i \(-0.527308\pi\)
\(462\) 0 0
\(463\) 14.5739i 0.677308i −0.940911 0.338654i \(-0.890028\pi\)
0.940911 0.338654i \(-0.109972\pi\)
\(464\) 0 0
\(465\) −8.51957 + 20.5681i −0.395085 + 0.953821i
\(466\) 0 0
\(467\) 4.30114 4.30114i 0.199033 0.199033i −0.600552 0.799585i \(-0.705053\pi\)
0.799585 + 0.600552i \(0.205053\pi\)
\(468\) 0 0
\(469\) −28.6420 11.8639i −1.32256 0.547824i
\(470\) 0 0
\(471\) 6.05488 2.50801i 0.278994 0.115563i
\(472\) 0 0
\(473\) 26.5370 + 64.0660i 1.22017 + 2.94576i
\(474\) 0 0
\(475\) −0.727409 −0.0333758
\(476\) 0 0
\(477\) −12.5810 −0.576046
\(478\) 0 0
\(479\) −11.5060 27.7780i −0.525723 1.26921i −0.934301 0.356484i \(-0.883975\pi\)
0.408578 0.912723i \(-0.366025\pi\)
\(480\) 0 0
\(481\) 2.75758 1.14223i 0.125735 0.0520810i
\(482\) 0 0
\(483\) −2.99898 1.24222i −0.136458 0.0565230i
\(484\) 0 0
\(485\) −20.8203 + 20.8203i −0.945400 + 0.945400i
\(486\) 0 0
\(487\) 12.6321 30.4966i 0.572416 1.38193i −0.327076 0.944998i \(-0.606063\pi\)
0.899492 0.436937i \(-0.143937\pi\)
\(488\) 0 0
\(489\) 10.4622i 0.473116i
\(490\) 0 0
\(491\) 11.8153 + 11.8153i 0.533218 + 0.533218i 0.921528 0.388311i \(-0.126941\pi\)
−0.388311 + 0.921528i \(0.626941\pi\)
\(492\) 0 0
\(493\) −10.8797 + 11.0376i −0.489995 + 0.497107i
\(494\) 0 0
\(495\) −15.3383 15.3383i −0.689407 0.689407i
\(496\) 0 0
\(497\) 48.0592i 2.15575i
\(498\) 0 0
\(499\) −10.0952 + 24.3720i −0.451923 + 1.09104i 0.519667 + 0.854369i \(0.326056\pi\)
−0.971590 + 0.236670i \(0.923944\pi\)
\(500\) 0 0
\(501\) 6.70748 6.70748i 0.299668 0.299668i
\(502\) 0 0
\(503\) 7.45731 + 3.08892i 0.332505 + 0.137728i 0.542689 0.839934i \(-0.317406\pi\)
−0.210184 + 0.977662i \(0.567406\pi\)
\(504\) 0 0
\(505\) −24.1748 + 10.0135i −1.07576 + 0.445596i
\(506\) 0 0
\(507\) 5.33410 + 12.8776i 0.236896 + 0.571916i
\(508\) 0 0
\(509\) −0.0643005 −0.00285007 −0.00142503 0.999999i \(-0.500454\pi\)
−0.00142503 + 0.999999i \(0.500454\pi\)
\(510\) 0 0
\(511\) 7.01635 0.310385
\(512\) 0 0
\(513\) −2.92591 7.06378i −0.129182 0.311873i
\(514\) 0 0
\(515\) 9.07040 3.75708i 0.399690 0.165557i
\(516\) 0 0
\(517\) −18.6666 7.73198i −0.820958 0.340052i
\(518\) 0 0
\(519\) −17.1725 + 17.1725i −0.753789 + 0.753789i
\(520\) 0 0
\(521\) −3.14015 + 7.58100i −0.137573 + 0.332130i −0.977618 0.210386i \(-0.932528\pi\)
0.840046 + 0.542515i \(0.182528\pi\)
\(522\) 0 0
\(523\) 9.10794i 0.398263i 0.979973 + 0.199131i \(0.0638120\pi\)
−0.979973 + 0.199131i \(0.936188\pi\)
\(524\) 0 0
\(525\) −1.41186 1.41186i −0.0616186 0.0616186i
\(526\) 0 0
\(527\) 24.6069 + 24.2549i 1.07190 + 1.05656i
\(528\) 0 0
\(529\) 15.7808 + 15.7808i 0.686123 + 0.686123i
\(530\) 0 0
\(531\) 14.2634i 0.618978i
\(532\) 0 0
\(533\) −3.46925 + 8.37551i −0.150270 + 0.362784i
\(534\) 0 0
\(535\) −19.9896 + 19.9896i −0.864228 + 0.864228i
\(536\) 0 0
\(537\) 7.05364 + 2.92172i 0.304387 + 0.126081i
\(538\) 0 0
\(539\) 25.0828 10.3897i 1.08039 0.447514i
\(540\) 0 0
\(541\) −5.16424 12.4676i −0.222028 0.536023i 0.773137 0.634239i \(-0.218687\pi\)
−0.995165 + 0.0982156i \(0.968687\pi\)
\(542\) 0 0
\(543\) 16.7157 0.717339
\(544\) 0 0
\(545\) 5.50817 0.235944
\(546\) 0 0
\(547\) −11.2642 27.1941i −0.481621 1.16274i −0.958839 0.283951i \(-0.908355\pi\)
0.477217 0.878785i \(-0.341645\pi\)
\(548\) 0 0
\(549\) −3.91522 + 1.62174i −0.167097 + 0.0692140i
\(550\) 0 0
\(551\) 4.97100 + 2.05905i 0.211772 + 0.0877186i
\(552\) 0 0
\(553\) −22.8697 + 22.8697i −0.972518 + 0.972518i
\(554\) 0 0
\(555\) 3.66297 8.84320i 0.155484 0.375373i
\(556\) 0 0
\(557\) 18.6792i 0.791465i −0.918366 0.395732i \(-0.870491\pi\)
0.918366 0.395732i \(-0.129509\pi\)
\(558\) 0 0
\(559\) −7.55356 7.55356i −0.319482 0.319482i
\(560\) 0 0
\(561\) 23.1187 9.77178i 0.976071 0.412565i
\(562\) 0 0
\(563\) −20.6388 20.6388i −0.869822 0.869822i 0.122630 0.992452i \(-0.460867\pi\)
−0.992452 + 0.122630i \(0.960867\pi\)
\(564\) 0 0
\(565\) 48.4890i 2.03995i
\(566\) 0 0
\(567\) 1.18252 2.85486i 0.0496613 0.119893i
\(568\) 0 0
\(569\) 16.7031 16.7031i 0.700229 0.700229i −0.264231 0.964460i \(-0.585118\pi\)
0.964460 + 0.264231i \(0.0851180\pi\)
\(570\) 0 0
\(571\) −14.0895 5.83606i −0.589627 0.244232i 0.0678631 0.997695i \(-0.478382\pi\)
−0.657490 + 0.753463i \(0.728382\pi\)
\(572\) 0 0
\(573\) −3.78850 + 1.56925i −0.158267 + 0.0655563i
\(574\) 0 0
\(575\) −0.160660 0.387868i −0.00669999 0.0161752i
\(576\) 0 0
\(577\) 7.85403 0.326967 0.163484 0.986546i \(-0.447727\pi\)
0.163484 + 0.986546i \(0.447727\pi\)
\(578\) 0 0
\(579\) −20.4089 −0.848165
\(580\) 0 0
\(581\) 6.01515 + 14.5218i 0.249550 + 0.602468i
\(582\) 0 0
\(583\) −36.3699 + 15.0649i −1.50629 + 0.623924i
\(584\) 0 0
\(585\) 3.08719 + 1.27876i 0.127640 + 0.0528700i
\(586\) 0 0
\(587\) −19.8525 + 19.8525i −0.819402 + 0.819402i −0.986021 0.166619i \(-0.946715\pi\)
0.166619 + 0.986021i \(0.446715\pi\)
\(588\) 0 0
\(589\) 4.59042 11.0822i 0.189145 0.456636i
\(590\) 0 0
\(591\) 16.6337i 0.684217i
\(592\) 0 0
\(593\) −10.8867 10.8867i −0.447063 0.447063i 0.447314 0.894377i \(-0.352381\pi\)
−0.894377 + 0.447314i \(0.852381\pi\)
\(594\) 0 0
\(595\) −30.9386 + 13.0771i −1.26836 + 0.536109i
\(596\) 0 0
\(597\) −16.3339 16.3339i −0.668503 0.668503i
\(598\) 0 0
\(599\) 18.0394i 0.737069i 0.929614 + 0.368535i \(0.120140\pi\)
−0.929614 + 0.368535i \(0.879860\pi\)
\(600\) 0 0
\(601\) −6.42665 + 15.5153i −0.262149 + 0.632883i −0.999071 0.0430947i \(-0.986278\pi\)
0.736922 + 0.675977i \(0.236278\pi\)
\(602\) 0 0
\(603\) 10.8542 10.8542i 0.442016 0.442016i
\(604\) 0 0
\(605\) −38.8561 16.0947i −1.57973 0.654344i
\(606\) 0 0
\(607\) 19.8148 8.20757i 0.804259 0.333135i 0.0575982 0.998340i \(-0.481656\pi\)
0.746661 + 0.665205i \(0.231656\pi\)
\(608\) 0 0
\(609\) 5.65192 + 13.6449i 0.229027 + 0.552920i
\(610\) 0 0
\(611\) 3.11247 0.125917
\(612\) 0 0
\(613\) 30.7109 1.24040 0.620200 0.784444i \(-0.287051\pi\)
0.620200 + 0.784444i \(0.287051\pi\)
\(614\) 0 0
\(615\) 11.1254 + 26.8592i 0.448621 + 1.08307i
\(616\) 0 0
\(617\) −12.5311 + 5.19056i −0.504484 + 0.208964i −0.620386 0.784297i \(-0.713024\pi\)
0.115902 + 0.993261i \(0.463024\pi\)
\(618\) 0 0
\(619\) 20.7341 + 8.58836i 0.833375 + 0.345195i 0.758238 0.651978i \(-0.226060\pi\)
0.0751374 + 0.997173i \(0.476060\pi\)
\(620\) 0 0
\(621\) 3.12030 3.12030i 0.125213 0.125213i
\(622\) 0 0
\(623\) −0.416419 + 1.00533i −0.0166835 + 0.0402775i
\(624\) 0 0
\(625\) 27.2826i 1.09130i
\(626\) 0 0
\(627\) −6.16152 6.16152i −0.246067 0.246067i
\(628\) 0 0
\(629\) −10.5797 10.4284i −0.421841 0.415806i
\(630\) 0 0
\(631\) −25.3981 25.3981i −1.01108 1.01108i −0.999938 0.0111430i \(-0.996453\pi\)
−0.0111430 0.999938i \(-0.503547\pi\)
\(632\) 0 0
\(633\) 1.22308i 0.0486131i
\(634\) 0 0
\(635\) −6.77544 + 16.3574i −0.268875 + 0.649122i
\(636\) 0 0
\(637\) −2.95734 + 2.95734i −0.117174 + 0.117174i
\(638\) 0 0
\(639\) 21.9845 + 9.10626i 0.869692 + 0.360238i
\(640\) 0 0
\(641\) 10.0617 4.16767i 0.397411 0.164613i −0.175022 0.984565i \(-0.556000\pi\)
0.572433 + 0.819951i \(0.306000\pi\)
\(642\) 0 0
\(643\) −4.14957 10.0179i −0.163643 0.395069i 0.820694 0.571369i \(-0.193587\pi\)
−0.984337 + 0.176299i \(0.943587\pi\)
\(644\) 0 0
\(645\) −34.2569 −1.34886
\(646\) 0 0
\(647\) 8.06107 0.316913 0.158457 0.987366i \(-0.449348\pi\)
0.158457 + 0.987366i \(0.449348\pi\)
\(648\) 0 0
\(649\) −17.0794 41.2333i −0.670425 1.61855i
\(650\) 0 0
\(651\) 30.4198 12.6003i 1.19224 0.493844i
\(652\) 0 0
\(653\) 38.0843 + 15.7751i 1.49036 + 0.617326i 0.971394 0.237472i \(-0.0763188\pi\)
0.518961 + 0.854798i \(0.326319\pi\)
\(654\) 0 0
\(655\) 6.98566 6.98566i 0.272952 0.272952i
\(656\) 0 0
\(657\) −1.32946 + 3.20959i −0.0518671 + 0.125218i
\(658\) 0 0
\(659\) 33.2980i 1.29710i −0.761170 0.648552i \(-0.775375\pi\)
0.761170 0.648552i \(-0.224625\pi\)
\(660\) 0 0
\(661\) −7.50126 7.50126i −0.291765 0.291765i 0.546012 0.837777i \(-0.316145\pi\)
−0.837777 + 0.546012i \(0.816145\pi\)
\(662\) 0 0
\(663\) −2.71422 + 2.75361i −0.105411 + 0.106941i
\(664\) 0 0
\(665\) 8.24566 + 8.24566i 0.319753 + 0.319753i
\(666\) 0 0
\(667\) 3.10540i 0.120242i
\(668\) 0 0
\(669\) −4.27951 + 10.3317i −0.165456 + 0.399445i
\(670\) 0 0
\(671\) −9.37639 + 9.37639i −0.361972 + 0.361972i
\(672\) 0 0
\(673\) −17.8537 7.39523i −0.688208 0.285065i 0.0110455 0.999939i \(-0.496484\pi\)
−0.699253 + 0.714874i \(0.746484\pi\)
\(674\) 0 0
\(675\) 2.50769 1.03872i 0.0965211 0.0399804i
\(676\) 0 0
\(677\) −1.46317 3.53241i −0.0562343 0.135762i 0.893265 0.449530i \(-0.148408\pi\)
−0.949500 + 0.313768i \(0.898408\pi\)
\(678\) 0 0
\(679\) 43.5476 1.67120
\(680\) 0 0
\(681\) −17.0803 −0.654520
\(682\) 0 0
\(683\) 10.7023 + 25.8376i 0.409511 + 0.988647i 0.985267 + 0.171025i \(0.0547079\pi\)
−0.575756 + 0.817622i \(0.695292\pi\)
\(684\) 0 0
\(685\) 14.3300 5.93570i 0.547523 0.226791i
\(686\) 0 0
\(687\) 23.1066 + 9.57106i 0.881571 + 0.365159i
\(688\) 0 0
\(689\) 4.28811 4.28811i 0.163364 0.163364i
\(690\) 0 0
\(691\) −10.2602 + 24.7702i −0.390315 + 0.942303i 0.599556 + 0.800333i \(0.295344\pi\)
−0.989871 + 0.141971i \(0.954656\pi\)
\(692\) 0 0
\(693\) 32.0816i 1.21868i
\(694\) 0 0
\(695\) −6.52985 6.52985i −0.247691 0.247691i
\(696\) 0 0
\(697\) 45.1185 0.325043i 1.70899 0.0123119i
\(698\) 0 0
\(699\) −6.59578 6.59578i −0.249475 0.249475i
\(700\) 0 0
\(701\) 29.7543i 1.12380i −0.827204 0.561902i \(-0.810070\pi\)
0.827204 0.561902i \(-0.189930\pi\)
\(702\) 0 0
\(703\) −1.97364 + 4.76479i −0.0744373 + 0.179708i
\(704\) 0 0
\(705\) 7.05784 7.05784i 0.265814 0.265814i
\(706\) 0 0
\(707\) 35.7541 + 14.8098i 1.34467 + 0.556981i
\(708\) 0 0
\(709\) 0.418231 0.173237i 0.0157070 0.00650605i −0.374816 0.927099i \(-0.622294\pi\)
0.390523 + 0.920593i \(0.372294\pi\)
\(710\) 0 0
\(711\) −6.12828 14.7950i −0.229828 0.554855i
\(712\) 0 0
\(713\) 6.92313 0.259273
\(714\) 0 0
\(715\) 10.4558 0.391025
\(716\) 0 0
\(717\) 4.55342 + 10.9929i 0.170051 + 0.410538i
\(718\) 0 0
\(719\) −19.7773 + 8.19202i −0.737568 + 0.305511i −0.719658 0.694329i \(-0.755701\pi\)
−0.0179105 + 0.999840i \(0.505701\pi\)
\(720\) 0 0
\(721\) −13.4150 5.55666i −0.499599 0.206941i
\(722\) 0 0
\(723\) 14.5219 14.5219i 0.540075 0.540075i
\(724\) 0 0
\(725\) −0.730979 + 1.76474i −0.0271479 + 0.0655408i
\(726\) 0 0
\(727\) 22.4811i 0.833779i −0.908957 0.416889i \(-0.863120\pi\)
0.908957 0.416889i \(-0.136880\pi\)
\(728\) 0 0
\(729\) 13.9078 + 13.9078i 0.515105 + 0.515105i
\(730\) 0 0
\(731\) −19.9915 + 49.2646i −0.739412 + 1.82212i
\(732\) 0 0
\(733\) −14.9436 14.9436i −0.551953 0.551953i 0.375051 0.927004i \(-0.377625\pi\)
−0.927004 + 0.375051i \(0.877625\pi\)
\(734\) 0 0
\(735\) 13.4121i 0.494713i
\(736\) 0 0
\(737\) 18.3807 44.3749i 0.677061 1.63457i
\(738\) 0 0
\(739\) −16.1375 + 16.1375i −0.593626 + 0.593626i −0.938609 0.344983i \(-0.887885\pi\)
0.344983 + 0.938609i \(0.387885\pi\)
\(740\) 0 0
\(741\) 1.24015 + 0.513685i 0.0455579 + 0.0188707i
\(742\) 0 0
\(743\) −34.6827 + 14.3660i −1.27238 + 0.527039i −0.913688 0.406416i \(-0.866778\pi\)
−0.358696 + 0.933455i \(0.616778\pi\)
\(744\) 0 0
\(745\) 6.42098 + 15.5016i 0.235247 + 0.567935i
\(746\) 0 0
\(747\) −7.78269 −0.284754
\(748\) 0 0
\(749\) 41.8102 1.52771
\(750\) 0 0
\(751\) −16.0162 38.6665i −0.584439 1.41096i −0.888752 0.458389i \(-0.848427\pi\)
0.304313 0.952572i \(-0.401573\pi\)
\(752\) 0 0
\(753\) 1.95741 0.810786i 0.0713320 0.0295467i
\(754\) 0 0
\(755\) 34.2066 + 14.1688i 1.24490 + 0.515656i
\(756\) 0 0
\(757\) 1.75575 1.75575i 0.0638138 0.0638138i −0.674480 0.738293i \(-0.735632\pi\)
0.738293 + 0.674480i \(0.235632\pi\)
\(758\) 0 0
\(759\) 1.92456 4.64631i 0.0698572 0.168650i
\(760\) 0 0
\(761\) 18.0881i 0.655695i −0.944731 0.327847i \(-0.893677\pi\)
0.944731 0.327847i \(-0.106323\pi\)
\(762\) 0 0
\(763\) −5.76043 5.76043i −0.208542 0.208542i
\(764\) 0 0
\(765\) −0.119810 16.6305i −0.00433174 0.601279i
\(766\) 0 0
\(767\) 4.86152 + 4.86152i 0.175539 + 0.175539i
\(768\) 0 0
\(769\) 22.2047i 0.800721i −0.916358 0.400360i \(-0.868885\pi\)
0.916358 0.400360i \(-0.131115\pi\)
\(770\) 0 0
\(771\) −4.61529 + 11.1423i −0.166216 + 0.401280i
\(772\) 0 0
\(773\) −13.6919 + 13.6919i −0.492463 + 0.492463i −0.909081 0.416619i \(-0.863215\pi\)
0.416619 + 0.909081i \(0.363215\pi\)
\(774\) 0 0
\(775\) 3.93428 + 1.62963i 0.141324 + 0.0585381i
\(776\) 0 0
\(777\) −13.0789 + 5.41747i −0.469204 + 0.194351i
\(778\) 0 0
\(779\) −5.99449 14.4720i −0.214775 0.518512i
\(780\) 0 0
\(781\) 74.4579 2.66431
\(782\) 0 0
\(783\) −20.0774 −0.717509
\(784\) 0 0
\(785\) −5.19998 12.5539i −0.185595 0.448066i
\(786\) 0 0
\(787\) −22.8930 + 9.48258i −0.816047 + 0.338018i −0.751364 0.659888i \(-0.770604\pi\)
−0.0646829 + 0.997906i \(0.520604\pi\)
\(788\) 0 0
\(789\) 33.0478 + 13.6889i 1.17653 + 0.487336i
\(790\) 0 0
\(791\) 50.7097 50.7097i 1.80303 1.80303i
\(792\) 0 0
\(793\) 0.781709 1.88721i 0.0277593 0.0670168i
\(794\) 0 0
\(795\) 19.4474i 0.689729i
\(796\) 0 0
\(797\) −16.0835 16.0835i −0.569707 0.569707i 0.362339 0.932046i \(-0.381978\pi\)
−0.932046 + 0.362339i \(0.881978\pi\)
\(798\) 0 0
\(799\) −6.03104 14.2686i −0.213363 0.504787i
\(800\) 0 0
\(801\) −0.380978 0.380978i −0.0134612 0.0134612i
\(802\) 0 0
\(803\) 10.8704i 0.383607i
\(804\) 0 0
\(805\) −2.57555 + 6.21792i −0.0907762 + 0.219153i
\(806\) 0 0
\(807\) −19.5215 + 19.5215i −0.687190 + 0.687190i
\(808\) 0 0
\(809\) 44.2248 + 18.3185i 1.55486 + 0.644044i 0.984187 0.177134i \(-0.0566825\pi\)
0.570673 + 0.821178i \(0.306682\pi\)
\(810\) 0 0
\(811\) −39.7135 + 16.4499i −1.39453 + 0.577632i −0.948325 0.317299i \(-0.897224\pi\)
−0.446203 + 0.894932i \(0.647224\pi\)
\(812\) 0 0
\(813\) −11.9720 28.9030i −0.419877 1.01367i
\(814\) 0 0
\(815\) −21.6917 −0.759827
\(816\) 0 0
\(817\) 18.4579 0.645761
\(818\) 0 0
\(819\) −1.89125 4.56589i −0.0660858 0.159545i
\(820\) 0 0
\(821\) 30.8199 12.7660i 1.07562 0.445537i 0.226650 0.973976i \(-0.427223\pi\)
0.848971 + 0.528440i \(0.177223\pi\)
\(822\) 0 0
\(823\) −8.35785 3.46193i −0.291336 0.120675i 0.232229 0.972661i \(-0.425398\pi\)
−0.523565 + 0.851986i \(0.675398\pi\)
\(824\) 0 0
\(825\) 2.18739 2.18739i 0.0761550 0.0761550i
\(826\) 0 0
\(827\) 5.60353 13.5281i 0.194854 0.470419i −0.796010 0.605283i \(-0.793060\pi\)
0.990864 + 0.134864i \(0.0430598\pi\)
\(828\) 0 0
\(829\) 30.5539i 1.06118i −0.847629 0.530590i \(-0.821971\pi\)
0.847629 0.530590i \(-0.178029\pi\)
\(830\) 0 0
\(831\) 18.5976 + 18.5976i 0.645144 + 0.645144i
\(832\) 0 0
\(833\) 19.2879 + 7.82698i 0.668285 + 0.271189i
\(834\) 0 0
\(835\) −13.9069 13.9069i −0.481268 0.481268i
\(836\) 0 0
\(837\) 44.7603i 1.54714i
\(838\) 0 0
\(839\) −2.37805 + 5.74111i −0.0820993 + 0.198205i −0.959599 0.281373i \(-0.909210\pi\)
0.877499 + 0.479578i \(0.159210\pi\)
\(840\) 0 0
\(841\) −10.5153 + 10.5153i −0.362597 + 0.362597i
\(842\) 0 0
\(843\) −4.41040 1.82685i −0.151902 0.0629199i
\(844\) 0 0
\(845\) 26.6998 11.0594i 0.918501 0.380455i
\(846\) 0 0
\(847\) 23.8038 + 57.4675i 0.817909 + 1.97461i
\(848\) 0 0
\(849\) 4.41597 0.151556
\(850\) 0 0
\(851\) −2.97658 −0.102036
\(852\) 0 0
\(853\) 9.58980 + 23.1518i 0.328349 + 0.792704i 0.998715 + 0.0506737i \(0.0161368\pi\)
−0.670367 + 0.742030i \(0.733863\pi\)
\(854\) 0 0
\(855\) −5.33432 + 2.20955i −0.182430 + 0.0755650i
\(856\) 0 0
\(857\) 13.3430 + 5.52685i 0.455788 + 0.188794i 0.598752 0.800934i \(-0.295663\pi\)
−0.142964 + 0.989728i \(0.545663\pi\)
\(858\) 0 0
\(859\) 14.8437 14.8437i 0.506460 0.506460i −0.406978 0.913438i \(-0.633417\pi\)
0.913438 + 0.406978i \(0.133417\pi\)
\(860\) 0 0
\(861\) 16.4543 39.7243i 0.560762 1.35380i
\(862\) 0 0
\(863\) 12.3137i 0.419162i 0.977791 + 0.209581i \(0.0672100\pi\)
−0.977791 + 0.209581i \(0.932790\pi\)
\(864\) 0 0
\(865\) 35.6045 + 35.6045i 1.21059 + 1.21059i
\(866\) 0 0
\(867\) 17.8828 + 7.10721i 0.607332 + 0.241373i
\(868\) 0 0
\(869\) −35.4319 35.4319i −1.20194 1.20194i
\(870\) 0 0
\(871\) 7.39905i 0.250707i
\(872\) 0 0
\(873\) −8.25139 + 19.9206i −0.279267 + 0.674211i
\(874\) 0 0
\(875\) 25.8749 25.8749i 0.874731 0.874731i
\(876\) 0 0
\(877\) 30.0462 + 12.4455i 1.01459 + 0.420256i 0.827126 0.562016i \(-0.189974\pi\)
0.187461 + 0.982272i \(0.439974\pi\)
\(878\) 0 0
\(879\) −2.58941 + 1.07257i −0.0873388 + 0.0361769i
\(880\) 0 0
\(881\) −13.8980 33.5528i −0.468237 1.13042i −0.964932 0.262499i \(-0.915453\pi\)
0.496696 0.867925i \(-0.334547\pi\)
\(882\) 0 0
\(883\) 31.0615 1.04530 0.522652 0.852546i \(-0.324943\pi\)
0.522652 + 0.852546i \(0.324943\pi\)
\(884\) 0 0
\(885\) 22.0480 0.741135
\(886\) 0 0
\(887\) −18.5915 44.8837i −0.624240 1.50705i −0.846680 0.532102i \(-0.821402\pi\)
0.222440 0.974946i \(-0.428598\pi\)
\(888\) 0 0
\(889\) 24.1922 10.0208i 0.811381 0.336085i
\(890\) 0 0
\(891\) 4.42302 + 1.83207i 0.148177 + 0.0613768i
\(892\) 0 0
\(893\) −3.80283 + 3.80283i −0.127257 + 0.127257i
\(894\) 0 0
\(895\) 6.05772 14.6246i 0.202487 0.488847i
\(896\) 0 0
\(897\) 0.774724i 0.0258673i
\(898\) 0 0
\(899\) −22.2733 22.2733i −0.742856 0.742856i
\(900\) 0 0
\(901\) −27.9672 11.3490i −0.931723 0.378092i
\(902\) 0 0
\(903\) 35.8258 + 35.8258i 1.19221 + 1.19221i
\(904\) 0 0
\(905\) 34.6574i 1.15205i
\(906\) 0 0
\(907\) 3.76687 9.09402i 0.125077 0.301962i −0.848921 0.528520i \(-0.822747\pi\)
0.973998 + 0.226558i \(0.0727472\pi\)
\(908\) 0 0
\(909\) −13.5494 + 13.5494i −0.449404 + 0.449404i
\(910\) 0 0
\(911\) −5.84015 2.41907i −0.193493 0.0801473i 0.283833 0.958874i \(-0.408394\pi\)
−0.477326 + 0.878726i \(0.658394\pi\)
\(912\) 0 0
\(913\) −22.4986 + 9.31922i −0.744595 + 0.308421i
\(914\) 0 0
\(915\) −2.50684 6.05205i −0.0828736 0.200074i
\(916\) 0 0
\(917\) −14.6112 −0.482503
\(918\) 0 0
\(919\) 35.0444 1.15601 0.578004 0.816034i \(-0.303832\pi\)
0.578004 + 0.816034i \(0.303832\pi\)
\(920\) 0 0
\(921\) 9.61213 + 23.2057i 0.316730 + 0.764655i
\(922\) 0 0
\(923\) −10.5969 + 4.38939i −0.348802 + 0.144479i
\(924\) 0 0
\(925\) −1.69154 0.700657i −0.0556174 0.0230375i
\(926\) 0 0
\(927\) 5.08373 5.08373i 0.166972 0.166972i
\(928\) 0 0
\(929\) 2.54453 6.14303i 0.0834832 0.201546i −0.876625 0.481173i \(-0.840211\pi\)
0.960109 + 0.279627i \(0.0902108\pi\)
\(930\) 0 0
\(931\) 7.22657i 0.236841i
\(932\) 0 0
\(933\) 20.2488 + 20.2488i 0.662915 + 0.662915i
\(934\) 0 0
\(935\) −20.2603 47.9330i −0.662581 1.56758i
\(936\) 0 0
\(937\) −34.8896 34.8896i −1.13979 1.13979i −0.988487 0.151306i \(-0.951652\pi\)
−0.151306 0.988487i \(-0.548348\pi\)
\(938\) 0 0
\(939\) 13.6545i 0.445597i
\(940\) 0 0
\(941\) 15.8417 38.2453i 0.516425 1.24676i −0.423661 0.905821i \(-0.639255\pi\)
0.940085 0.340939i \(-0.110745\pi\)
\(942\) 0 0
\(943\) 6.39274 6.39274i 0.208176 0.208176i
\(944\) 0 0
\(945\) −40.2009 16.6518i −1.30774 0.541682i
\(946\) 0 0
\(947\) 16.1545 6.69143i 0.524952 0.217442i −0.104438 0.994531i \(-0.533305\pi\)
0.629391 + 0.777089i \(0.283305\pi\)
\(948\) 0 0
\(949\) −0.640824 1.54709i −0.0208020 0.0502206i
\(950\) 0 0
\(951\) 3.10214 0.100594
\(952\) 0 0
\(953\) −54.4709 −1.76449 −0.882243 0.470794i \(-0.843968\pi\)
−0.882243 + 0.470794i \(0.843968\pi\)
\(954\) 0 0
\(955\) 3.25359 + 7.85486i 0.105284 + 0.254177i
\(956\) 0 0
\(957\) −21.1400 + 8.75647i −0.683359 + 0.283057i
\(958\) 0 0
\(959\) −21.1939 8.77879i −0.684386 0.283482i
\(960\) 0 0
\(961\) −27.7354 + 27.7354i −0.894689 + 0.894689i
\(962\) 0 0
\(963\) −7.92220 + 19.1259i −0.255289 + 0.616323i
\(964\) 0 0
\(965\) 42.3147i 1.36216i
\(966\) 0 0
\(967\) 7.54887 + 7.54887i 0.242755 + 0.242755i 0.817989 0.575234i \(-0.195089\pi\)
−0.575234 + 0.817989i \(0.695089\pi\)
\(968\) 0 0
\(969\) −0.0481285 6.68061i −0.00154611 0.214612i
\(970\) 0 0
\(971\) −42.9911 42.9911i −1.37965 1.37965i −0.845199 0.534452i \(-0.820518\pi\)
−0.534452 0.845199i \(-0.679482\pi\)
\(972\) 0 0
\(973\) 13.6578i 0.437849i
\(974\) 0 0
\(975\) −0.182362 + 0.440261i −0.00584026 + 0.0140996i
\(976\) 0 0
\(977\) 8.40142 8.40142i 0.268785 0.268785i −0.559825 0.828611i \(-0.689132\pi\)
0.828611 + 0.559825i \(0.189132\pi\)
\(978\) 0 0
\(979\) −1.55754 0.645156i −0.0497793 0.0206193i
\(980\) 0 0
\(981\) 3.72657 1.54359i 0.118980 0.0492832i
\(982\) 0 0
\(983\) −10.0746 24.3222i −0.321329 0.775757i −0.999177 0.0405551i \(-0.987087\pi\)
0.677848 0.735202i \(-0.262913\pi\)
\(984\) 0 0
\(985\) −34.4873 −1.09886
\(986\) 0 0
\(987\) −14.7621 −0.469884
\(988\) 0 0
\(989\) 4.07673 + 9.84210i 0.129633 + 0.312961i
\(990\) 0 0
\(991\) 37.9278 15.7102i 1.20482 0.499051i 0.312264 0.949995i \(-0.398913\pi\)
0.892552 + 0.450944i \(0.148913\pi\)
\(992\) 0 0
\(993\) −18.9013 7.82917i −0.599814 0.248451i
\(994\) 0 0
\(995\) −33.8659 + 33.8659i −1.07362 + 1.07362i
\(996\) 0 0
\(997\) 2.79830 6.75570i 0.0886231 0.213955i −0.873354 0.487087i \(-0.838060\pi\)
0.961977 + 0.273132i \(0.0880595\pi\)
\(998\) 0 0
\(999\) 19.2446i 0.608872i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 544.2.bb.d.321.3 yes 16
4.3 odd 2 inner 544.2.bb.d.321.2 yes 16
17.5 odd 16 9248.2.a.bx.1.7 16
17.8 even 8 inner 544.2.bb.d.161.3 yes 16
17.12 odd 16 9248.2.a.bx.1.10 16
68.39 even 16 9248.2.a.bx.1.9 16
68.59 odd 8 inner 544.2.bb.d.161.2 16
68.63 even 16 9248.2.a.bx.1.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
544.2.bb.d.161.2 16 68.59 odd 8 inner
544.2.bb.d.161.3 yes 16 17.8 even 8 inner
544.2.bb.d.321.2 yes 16 4.3 odd 2 inner
544.2.bb.d.321.3 yes 16 1.1 even 1 trivial
9248.2.a.bx.1.7 16 17.5 odd 16
9248.2.a.bx.1.8 16 68.63 even 16
9248.2.a.bx.1.9 16 68.39 even 16
9248.2.a.bx.1.10 16 17.12 odd 16