Properties

Label 540.2.u
Level $540$
Weight $2$
Character orbit 540.u
Rep. character $\chi_{540}(61,\cdot)$
Character field $\Q(\zeta_{9})$
Dimension $72$
Newform subspaces $2$
Sturm bound $216$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 540 = 2^{2} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 540.u (of order \(9\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 27 \)
Character field: \(\Q(\zeta_{9})\)
Newform subspaces: \( 2 \)
Sturm bound: \(216\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(540, [\chi])\).

Total New Old
Modular forms 684 72 612
Cusp forms 612 72 540
Eisenstein series 72 0 72

Trace form

\( 72 q - 6 q^{9} + 24 q^{17} + 24 q^{21} + 36 q^{23} + 42 q^{27} + 42 q^{29} + 42 q^{33} + 12 q^{35} + 12 q^{39} - 18 q^{41} + 18 q^{43} + 6 q^{45} - 72 q^{47} + 18 q^{49} - 42 q^{51} - 72 q^{53} - 90 q^{57}+ \cdots - 102 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(540, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
540.2.u.a 540.u 27.e $30$ $4.312$ None 540.2.u.a \(0\) \(-3\) \(0\) \(0\) $\mathrm{SU}(2)[C_{9}]$
540.2.u.b 540.u 27.e $42$ $4.312$ None 540.2.u.b \(0\) \(3\) \(0\) \(0\) $\mathrm{SU}(2)[C_{9}]$

Decomposition of \(S_{2}^{\mathrm{old}}(540, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(540, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(108, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(270, [\chi])\)\(^{\oplus 2}\)