Properties

Label 540.2.bd
Level $540$
Weight $2$
Character orbit 540.bd
Rep. character $\chi_{540}(49,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $108$
Newform subspaces $1$
Sturm bound $216$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 540 = 2^{2} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 540.bd (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 135 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 1 \)
Sturm bound: \(216\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(540, [\chi])\).

Total New Old
Modular forms 684 108 576
Cusp forms 612 108 504
Eisenstein series 72 0 72

Trace form

\( 108 q - 3 q^{5} - 6 q^{9} + 6 q^{11} + 9 q^{15} + 36 q^{21} + 9 q^{25} + 6 q^{29} - 18 q^{31} - 9 q^{35} + 42 q^{39} + 24 q^{41} - 21 q^{45} + 18 q^{49} + 84 q^{51} - 66 q^{59} - 18 q^{61} - 69 q^{65} + 12 q^{69}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(540, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
540.2.bd.a 540.bd 135.p $108$ $4.312$ None 540.2.bd.a \(0\) \(0\) \(-3\) \(0\) $\mathrm{SU}(2)[C_{18}]$

Decomposition of \(S_{2}^{\mathrm{old}}(540, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(540, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(270, [\chi])\)\(^{\oplus 2}\)