Defining parameters
Level: | \( N \) | \(=\) | \( 540 = 2^{2} \cdot 3^{3} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 540.bf (of order \(18\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 540 \) |
Character field: | \(\Q(\zeta_{18})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(108\) | ||
Trace bound: | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(540, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 36 | 36 | 0 |
Cusp forms | 12 | 12 | 0 |
Eisenstein series | 24 | 24 | 0 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 12 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(540, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
540.1.bf.a | $6$ | $0.269$ | \(\Q(\zeta_{18})\) | $D_{9}$ | \(\Q(\sqrt{-5}) \) | None | \(0\) | \(0\) | \(0\) | \(-3\) | \(q-\zeta_{18}q^{2}-\zeta_{18}^{5}q^{3}+\zeta_{18}^{2}q^{4}-\zeta_{18}^{5}q^{5}+\cdots\) |
540.1.bf.b | $6$ | $0.269$ | \(\Q(\zeta_{18})\) | $D_{9}$ | \(\Q(\sqrt{-5}) \) | None | \(0\) | \(0\) | \(0\) | \(3\) | \(q+\zeta_{18}q^{2}+\zeta_{18}^{5}q^{3}+\zeta_{18}^{2}q^{4}-\zeta_{18}^{5}q^{5}+\cdots\) |