Defining parameters
| Level: | \( N \) | \(=\) | \( 5328 = 2^{4} \cdot 3^{2} \cdot 37 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 5328.l (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 444 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 6 \) | ||
| Sturm bound: | \(1824\) | ||
| Trace bound: | \(19\) | ||
| Distinguishing \(T_p\): | \(5\), \(19\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(5328, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 936 | 76 | 860 |
| Cusp forms | 888 | 76 | 812 |
| Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(5328, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 5328.2.l.a | $4$ | $42.544$ | \(\Q(\sqrt{-2}, \sqrt{37})\) | \(\Q(\sqrt{-37}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-1-\beta _{1})q^{19}-\beta _{2}q^{23}-5q^{25}+\cdots\) |
| 5328.2.l.b | $4$ | $42.544$ | \(\Q(\zeta_{8})\) | \(\Q(\sqrt{-1}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta_{3} q^{5}+\beta_1 q^{13}-\beta_{3} q^{17}+13 q^{25}+\cdots\) |
| 5328.2.l.c | $4$ | $42.544$ | \(\Q(\sqrt{-2}, \sqrt{37})\) | \(\Q(\sqrt{-37}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(1+\beta _{1})q^{19}-\beta _{2}q^{23}-5q^{25}+(5+\cdots)q^{31}+\cdots\) |
| 5328.2.l.d | $8$ | $42.544$ | 8.0.4956160000.2 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{2}q^{5}-\beta _{6}q^{7}+2\beta _{2}q^{11}+\beta _{5}q^{13}+\cdots\) |
| 5328.2.l.e | $8$ | $42.544$ | 8.0.4956160000.2 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{2}q^{5}+\beta _{6}q^{7}-2\beta _{2}q^{11}+\beta _{5}q^{13}+\cdots\) |
| 5328.2.l.f | $48$ | $42.544$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
Decomposition of \(S_{2}^{\mathrm{old}}(5328, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(5328, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(444, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1332, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1776, [\chi])\)\(^{\oplus 2}\)