Properties

Label 53.2.d
Level $53$
Weight $2$
Character orbit 53.d
Rep. character $\chi_{53}(10,\cdot)$
Character field $\Q(\zeta_{13})$
Dimension $36$
Newform subspaces $1$
Sturm bound $9$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 53 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 53.d (of order \(13\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 53 \)
Character field: \(\Q(\zeta_{13})\)
Newform subspaces: \( 1 \)
Sturm bound: \(9\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(53, [\chi])\).

Total New Old
Modular forms 60 60 0
Cusp forms 36 36 0
Eisenstein series 24 24 0

Trace form

\( 36 q - 8 q^{2} - 9 q^{3} - 6 q^{4} - 5 q^{5} - q^{6} - 5 q^{7} - 24 q^{8} - 8 q^{9} - 17 q^{10} + 3 q^{11} + 17 q^{12} + q^{13} + 13 q^{14} - 33 q^{15} + 22 q^{16} - 26 q^{17} + 32 q^{18} + q^{19} + 19 q^{20}+ \cdots + 37 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(53, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
53.2.d.a 53.d 53.d $36$ $0.423$ None 53.2.d.a \(-8\) \(-9\) \(-5\) \(-5\) $\mathrm{SU}(2)[C_{13}]$