Properties

Label 525.6.t
Level $525$
Weight $6$
Character orbit 525.t
Rep. character $\chi_{525}(26,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $494$
Sturm bound $480$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 525.t (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 21 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(480\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(525, [\chi])\).

Total New Old
Modular forms 824 518 306
Cusp forms 776 494 282
Eisenstein series 48 24 24

Trace form

\( 494 q + 3 q^{3} + 3842 q^{4} + 169 q^{7} + 81 q^{9} + 1734 q^{12} - 59598 q^{16} - 1300 q^{18} - 723 q^{19} - 2544 q^{21} - 180 q^{22} - 6642 q^{24} - 58 q^{28} - 1989 q^{31} - 1050 q^{33} - 29004 q^{36}+ \cdots + 210612 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(525, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{6}^{\mathrm{old}}(525, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(525, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 2}\)