Properties

Label 525.2.bb
Level $525$
Weight $2$
Character orbit 525.bb
Rep. character $\chi_{525}(41,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $304$
Newform subspaces $1$
Sturm bound $160$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 525.bb (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 525 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 1 \)
Sturm bound: \(160\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(525, [\chi])\).

Total New Old
Modular forms 336 336 0
Cusp forms 304 304 0
Eisenstein series 32 32 0

Trace form

\( 304 q + 60 q^{4} - 12 q^{7} - 6 q^{9} + 8 q^{15} - 92 q^{16} - 16 q^{18} + 12 q^{21} - 48 q^{22} - 32 q^{25} - 36 q^{28} - 14 q^{30} - 8 q^{36} - 4 q^{37} - 26 q^{39} - 11 q^{42} - 20 q^{49} + 20 q^{51}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(525, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
525.2.bb.a 525.bb 525.ab $304$ $4.192$ None 525.2.bb.a \(0\) \(0\) \(0\) \(-12\) $\mathrm{SU}(2)[C_{10}]$