Defining parameters
Level: | \( N \) | \(=\) | \( 5200 = 2^{4} \cdot 5^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 5200.ga (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 52 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Sturm bound: | \(1680\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(5200, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 3504 | 532 | 2972 |
Cusp forms | 3216 | 532 | 2684 |
Eisenstein series | 288 | 0 | 288 |
Decomposition of \(S_{2}^{\mathrm{new}}(5200, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(5200, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(5200, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(208, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(260, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1040, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1300, [\chi])\)\(^{\oplus 3}\)