Defining parameters
Level: | \( N \) | \(=\) | \( 5200 = 2^{4} \cdot 5^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 5200.cd (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 65 \) |
Character field: | \(\Q(i)\) | ||
Sturm bound: | \(1680\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(5200, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1752 | 256 | 1496 |
Cusp forms | 1608 | 248 | 1360 |
Eisenstein series | 144 | 8 | 136 |
Decomposition of \(S_{2}^{\mathrm{new}}(5200, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(5200, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(5200, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(130, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(260, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(325, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(520, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(650, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1040, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1300, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2600, [\chi])\)\(^{\oplus 2}\)