Defining parameters
| Level: | \( N \) | \(=\) | \( 52 = 2^{2} \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 52.b (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 52 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 4 \) | ||
| Sturm bound: | \(21\) | ||
| Trace bound: | \(2\) | ||
| Distinguishing \(T_p\): | \(3\), \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(52, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 16 | 16 | 0 |
| Cusp forms | 12 | 12 | 0 |
| Eisenstein series | 4 | 4 | 0 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(52, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 52.3.b.a | $1$ | $1.417$ | \(\Q\) | \(\Q(\sqrt{-13}) \) | \(-2\) | \(0\) | \(0\) | \(12\) | \(q-2q^{2}+4q^{4}+12q^{7}-8q^{8}+9q^{9}+\cdots\) |
| 52.3.b.b | $1$ | $1.417$ | \(\Q\) | \(\Q(\sqrt{-13}) \) | \(2\) | \(0\) | \(0\) | \(-12\) | \(q+2q^{2}+4q^{4}-12q^{7}+8q^{8}+9q^{9}+\cdots\) |
| 52.3.b.c | $2$ | $1.417$ | \(\Q(\sqrt{-1}) \) | \(\Q(\sqrt{-1}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta q^{2}-4 q^{4}+4\beta q^{5}-4\beta q^{8}+\cdots\) |
| 52.3.b.d | $8$ | $1.417$ | 8.0.\(\cdots\).3 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}-\beta _{6}q^{3}+\beta _{2}q^{4}+(-\beta _{1}-\beta _{7})q^{5}+\cdots\) |