Properties

Label 52.3.b
Level $52$
Weight $3$
Character orbit 52.b
Rep. character $\chi_{52}(51,\cdot)$
Character field $\Q$
Dimension $12$
Newform subspaces $4$
Sturm bound $21$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 52 = 2^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 52.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 52 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(21\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\), \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(52, [\chi])\).

Total New Old
Modular forms 16 16 0
Cusp forms 12 12 0
Eisenstein series 4 4 0

Trace form

\( 12 q - 2 q^{4} - 28 q^{9} + 2 q^{10} + 34 q^{12} - 4 q^{13} - 2 q^{14} - 46 q^{16} + 16 q^{17} - 80 q^{22} + 36 q^{25} + 14 q^{26} - 24 q^{29} + 102 q^{30} - 52 q^{36} - 100 q^{38} + 162 q^{40} + 170 q^{42}+ \cdots + 238 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(52, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
52.3.b.a 52.b 52.b $1$ $1.417$ \(\Q\) \(\Q(\sqrt{-13}) \) 52.3.b.a \(-2\) \(0\) \(0\) \(12\) $\mathrm{U}(1)[D_{2}]$ \(q-2q^{2}+4q^{4}+12q^{7}-8q^{8}+9q^{9}+\cdots\)
52.3.b.b 52.b 52.b $1$ $1.417$ \(\Q\) \(\Q(\sqrt{-13}) \) 52.3.b.a \(2\) \(0\) \(0\) \(-12\) $\mathrm{U}(1)[D_{2}]$ \(q+2q^{2}+4q^{4}-12q^{7}+8q^{8}+9q^{9}+\cdots\)
52.3.b.c 52.b 52.b $2$ $1.417$ \(\Q(\sqrt{-1}) \) \(\Q(\sqrt{-1}) \) 52.3.b.c \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+\beta q^{2}-4 q^{4}+4\beta q^{5}-4\beta q^{8}+\cdots\)
52.3.b.d 52.b 52.b $8$ $1.417$ 8.0.\(\cdots\).3 None 52.3.b.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}-\beta _{6}q^{3}+\beta _{2}q^{4}+(-\beta _{1}-\beta _{7})q^{5}+\cdots\)