Defining parameters
Level: | \( N \) | \(=\) | \( 52 = 2^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 52.e (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(70\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(52, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 132 | 22 | 110 |
Cusp forms | 120 | 22 | 98 |
Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(52, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
52.10.e.a | $22$ | $26.782$ | None | \(0\) | \(0\) | \(1558\) | \(-912\) |
Decomposition of \(S_{10}^{\mathrm{old}}(52, [\chi])\) into lower level spaces
\( S_{10}^{\mathrm{old}}(52, [\chi]) \simeq \) \(S_{10}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 2}\)