Properties

Label 52.10.e
Level $52$
Weight $10$
Character orbit 52.e
Rep. character $\chi_{52}(9,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $22$
Newform subspaces $1$
Sturm bound $70$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 52 = 2^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 52.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 1 \)
Sturm bound: \(70\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(52, [\chi])\).

Total New Old
Modular forms 132 22 110
Cusp forms 120 22 98
Eisenstein series 12 0 12

Trace form

\( 22 q + 1558 q^{5} - 912 q^{7} - 86141 q^{9} - 62356 q^{11} - 123061 q^{13} + 261680 q^{15} - 287385 q^{17} + 972296 q^{19} - 4697572 q^{21} + 1364704 q^{23} + 14451564 q^{25} + 959040 q^{27} - 3519389 q^{29}+ \cdots + 5583384088 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(52, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
52.10.e.a 52.e 13.c $22$ $26.782$ None 52.10.e.a \(0\) \(0\) \(1558\) \(-912\) $\mathrm{SU}(2)[C_{3}]$

Decomposition of \(S_{10}^{\mathrm{old}}(52, [\chi])\) into lower level spaces

\( S_{10}^{\mathrm{old}}(52, [\chi]) \simeq \) \(S_{10}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 2}\)