Defining parameters
| Level: | \( N \) | \(=\) | \( 5184 = 2^{6} \cdot 3^{4} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 5184.bw (of order \(36\) and degree \(12\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 432 \) |
| Character field: | \(\Q(\zeta_{36})\) | ||
| Sturm bound: | \(1728\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(5184, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 10656 | 888 | 9768 |
| Cusp forms | 10080 | 840 | 9240 |
| Eisenstein series | 576 | 48 | 528 |
Decomposition of \(S_{2}^{\mathrm{new}}(5184, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(5184, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(5184, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(432, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1296, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1728, [\chi])\)\(^{\oplus 2}\)