Properties

Label 51.5
Level 51
Weight 5
Dimension 272
Nonzero newspaces 5
Newform subspaces 7
Sturm bound 960
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 51 = 3 \cdot 17 \)
Weight: \( k \) = \( 5 \)
Nonzero newspaces: \( 5 \)
Newform subspaces: \( 7 \)
Sturm bound: \(960\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(\Gamma_1(51))\).

Total New Old
Modular forms 416 300 116
Cusp forms 352 272 80
Eisenstein series 64 28 36

Trace form

\( 272 q - 8 q^{3} - 16 q^{4} - 8 q^{6} - 16 q^{7} - 8 q^{9} - 784 q^{10} - 240 q^{11} + 760 q^{12} + 800 q^{13} + 1536 q^{14} + 688 q^{15} - 32 q^{16} - 528 q^{17} - 2064 q^{18} - 1408 q^{19} - 5376 q^{20}+ \cdots - 71016 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(\Gamma_1(51))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
51.5.b \(\chi_{51}(35, \cdot)\) 51.5.b.a 22 1
51.5.c \(\chi_{51}(50, \cdot)\) 51.5.c.a 1 1
51.5.c.b 1
51.5.c.c 20
51.5.f \(\chi_{51}(38, \cdot)\) 51.5.f.a 44 2
51.5.g \(\chi_{51}(2, \cdot)\) 51.5.g.a 88 4
51.5.j \(\chi_{51}(7, \cdot)\) 51.5.j.a 96 8

Decomposition of \(S_{5}^{\mathrm{old}}(\Gamma_1(51))\) into lower level spaces

\( S_{5}^{\mathrm{old}}(\Gamma_1(51)) \cong \) \(S_{5}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 2}\)