Defining parameters
| Level: | \( N \) | \(=\) | \( 50329 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 50329.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 3 \) | ||
| Sturm bound: | \(8388\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(50329))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 4194 | 4194 | 0 |
| Cusp forms | 4193 | 4193 | 0 |
| Eisenstein series | 1 | 1 | 0 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(50329\) | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||
| \(+\) | \(2058\) | \(2058\) | \(0\) | \(2058\) | \(2058\) | \(0\) | \(0\) | \(0\) | \(0\) | |||
| \(-\) | \(2136\) | \(2136\) | \(0\) | \(2135\) | \(2135\) | \(0\) | \(1\) | \(1\) | \(0\) | |||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(50329))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 50329 | |||||||
| 50329.2.a.a | $1$ | $401.879$ | \(\Q\) | None | \(-1\) | \(-1\) | \(-3\) | \(0\) | $+$ | \(q-q^{2}-q^{3}-q^{4}-3q^{5}+q^{6}+3q^{8}+\cdots\) | |
| 50329.2.a.b | $2057$ | $401.879$ | None | \(-98\) | \(-59\) | \(-83\) | \(-106\) | $+$ | |||
| 50329.2.a.c | $2135$ | $401.879$ | None | \(98\) | \(56\) | \(80\) | \(100\) | $-$ | |||