Properties

Label 5.22.b
Level $5$
Weight $22$
Character orbit 5.b
Rep. character $\chi_{5}(4,\cdot)$
Character field $\Q$
Dimension $10$
Newform subspaces $1$
Sturm bound $11$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 5 \)
Weight: \( k \) \(=\) \( 22 \)
Character orbit: \([\chi]\) \(=\) 5.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(11\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{22}(5, [\chi])\).

Total New Old
Modular forms 12 12 0
Cusp forms 10 10 0
Eisenstein series 2 2 0

Trace form

\( 10 q - 9273720 q^{4} - 25175970 q^{5} + 190183320 q^{6} - 46796905530 q^{9} + 42469996280 q^{10} + 150626450520 q^{11} + 1196972791560 q^{14} + 28918735560 q^{15} + 13236859984160 q^{16} - 111339219544600 q^{19}+ \cdots - 22\!\cdots\!60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{22}^{\mathrm{new}}(5, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
5.22.b.a 5.b 5.b $10$ $13.974$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 5.22.b.a \(0\) \(0\) \(-25175970\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(-6\beta _{1}-\beta _{4})q^{3}+(-927372+\cdots)q^{4}+\cdots\)