Properties

Label 49686.2.a.ck
Level $49686$
Weight $2$
Character orbit 49686.a
Self dual yes
Analytic conductor $396.745$
Dimension $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [49686,2,Mod(1,49686)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(49686, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("49686.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 49686 = 2 \cdot 3 \cdot 7^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 49686.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,1,-1,1,1,-1,0,1,1,1,-1,-1,0,0,-1,1,5,1,1,1,0,-1,-5,-1,-4,0, -1,0,-3,-1,2,1,1,5,0,1,11,1,0,1,0,0,-1,-1,1,-5,-12,-1,0,-4,-5,0,10,-1, -1,0,-1,-3,-14,-1,1,2,0,1,0,1,-4,5,5,0,2,1,1,11,4,1,0,0,-8,1,1,0,2,0,5, -1,3,-1,12,1,0,-5,-2,-12,1,-1,2,0,-1,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(396.744707483\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: not computed
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} - q^{3} + q^{4} + q^{5} - q^{6} + q^{8} + q^{9} + q^{10} - q^{11} - q^{12} - q^{15} + q^{16} + 5 q^{17} + q^{18} + q^{19} + q^{20} - q^{22} - 5 q^{23} - q^{24} - 4 q^{25} - q^{27}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(7\) \( -1 \)
\(13\) \( +1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.