Properties

Label 495.2.n.h.181.1
Level $495$
Weight $2$
Character 495.181
Analytic conductor $3.953$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 495.n (of order \(5\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.95259490005\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \( x^{16} - 2 x^{15} + 5 x^{14} - 8 x^{13} + 47 x^{12} + 32 x^{11} + 171 x^{10} + 26 x^{9} + 360 x^{8} - 172 x^{7} + 471 x^{6} - 430 x^{5} + 383 x^{4} + 70 x^{3} + 17 x^{2} + 4 x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 181.1
Root \(-1.41763 + 1.02997i\) of defining polynomial
Character \(\chi\) \(=\) 495.181
Dual form 495.2.n.h.361.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.850504 - 2.61758i) q^{2} +(-4.51034 + 3.27695i) q^{4} +(-0.309017 + 0.951057i) q^{5} +(-2.21013 + 1.60575i) q^{7} +(7.96046 + 5.78361i) q^{8} +O(q^{10})\) \(q+(-0.850504 - 2.61758i) q^{2} +(-4.51034 + 3.27695i) q^{4} +(-0.309017 + 0.951057i) q^{5} +(-2.21013 + 1.60575i) q^{7} +(7.96046 + 5.78361i) q^{8} +2.75229 q^{10} +(3.02195 - 1.36669i) q^{11} +(-0.857468 - 2.63902i) q^{13} +(6.08291 + 4.41949i) q^{14} +(4.92308 - 15.1517i) q^{16} +(1.16845 - 3.59612i) q^{17} +(3.43983 + 2.49918i) q^{19} +(-1.72280 - 5.30222i) q^{20} +(-6.14759 - 6.74782i) q^{22} +1.37658 q^{23} +(-0.809017 - 0.587785i) q^{25} +(-6.17856 + 4.48898i) q^{26} +(4.70645 - 14.4850i) q^{28} +(7.17384 - 5.21210i) q^{29} +(1.68946 + 5.19964i) q^{31} -24.1685 q^{32} -10.4069 q^{34} +(-0.844194 - 2.59816i) q^{35} +(1.86189 - 1.35274i) q^{37} +(3.61622 - 11.1296i) q^{38} +(-7.96046 + 5.78361i) q^{40} +(6.97314 + 5.06629i) q^{41} +12.3981 q^{43} +(-9.15144 + 16.0670i) q^{44} +(-1.17079 - 3.60332i) q^{46} +(-4.52496 - 3.28757i) q^{47} +(0.143108 - 0.440442i) q^{49} +(-0.850504 + 2.61758i) q^{50} +(12.5154 + 9.09297i) q^{52} +(0.168046 + 0.517191i) q^{53} +(0.365963 + 3.29637i) q^{55} -26.8807 q^{56} +(-19.7445 - 14.3452i) q^{58} +(0.314933 - 0.228812i) q^{59} +(-4.43173 + 13.6395i) q^{61} +(12.1736 - 8.84462i) q^{62} +(10.7092 + 32.9596i) q^{64} +2.77482 q^{65} +3.65454 q^{67} +(6.51421 + 20.0487i) q^{68} +(-6.08291 + 4.41949i) q^{70} +(2.83231 - 8.71697i) q^{71} +(-6.60178 + 4.79647i) q^{73} +(-5.12445 - 3.72313i) q^{74} -23.7045 q^{76} +(-4.48433 + 7.87305i) q^{77} +(-1.06521 - 3.27837i) q^{79} +(12.8888 + 9.36425i) q^{80} +(7.33073 - 22.5617i) q^{82} +(1.43839 - 4.42691i) q^{83} +(3.05904 + 2.22252i) q^{85} +(-10.5446 - 32.4530i) q^{86} +(31.9605 + 6.59832i) q^{88} -6.62318 q^{89} +(6.13272 + 4.45568i) q^{91} +(-6.20886 + 4.51100i) q^{92} +(-4.75700 + 14.6405i) q^{94} +(-3.43983 + 2.49918i) q^{95} +(-5.12775 - 15.7816i) q^{97} -1.27461 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{2} - 8 q^{4} + 4 q^{5} - 4 q^{7} + 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 16 q + 2 q^{2} - 8 q^{4} + 4 q^{5} - 4 q^{7} + 6 q^{8} + 8 q^{10} - 4 q^{11} + 2 q^{13} + 22 q^{14} + 8 q^{16} + 4 q^{17} - 4 q^{19} - 2 q^{20} - 28 q^{22} - 8 q^{23} - 4 q^{25} - 6 q^{26} - 2 q^{28} + 26 q^{29} - 10 q^{31} - 56 q^{32} - 4 q^{34} + 4 q^{35} + 22 q^{37} + 30 q^{38} - 6 q^{40} + 6 q^{41} + 28 q^{43} - 68 q^{44} + 16 q^{46} + 20 q^{47} + 10 q^{49} + 2 q^{50} + 30 q^{52} - 14 q^{53} - 6 q^{55} - 68 q^{56} - 6 q^{58} + 16 q^{59} - 38 q^{61} + 20 q^{62} + 10 q^{64} - 12 q^{65} + 20 q^{67} + 48 q^{68} - 22 q^{70} + 54 q^{71} + 2 q^{73} - 28 q^{74} - 44 q^{76} - 34 q^{77} - 12 q^{79} + 22 q^{80} + 30 q^{82} + 28 q^{83} - 4 q^{85} - 74 q^{86} + 46 q^{88} - 76 q^{89} - 34 q^{91} + 8 q^{92} - 10 q^{94} + 4 q^{95} - 18 q^{97} - 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.850504 2.61758i −0.601397 1.85091i −0.519884 0.854237i \(-0.674025\pi\)
−0.0815129 0.996672i \(-0.525975\pi\)
\(3\) 0 0
\(4\) −4.51034 + 3.27695i −2.25517 + 1.63848i
\(5\) −0.309017 + 0.951057i −0.138197 + 0.425325i
\(6\) 0 0
\(7\) −2.21013 + 1.60575i −0.835350 + 0.606917i −0.921068 0.389402i \(-0.872682\pi\)
0.0857178 + 0.996319i \(0.472682\pi\)
\(8\) 7.96046 + 5.78361i 2.81445 + 2.04481i
\(9\) 0 0
\(10\) 2.75229 0.870350
\(11\) 3.02195 1.36669i 0.911152 0.412072i
\(12\) 0 0
\(13\) −0.857468 2.63902i −0.237819 0.731931i −0.996735 0.0807428i \(-0.974271\pi\)
0.758916 0.651188i \(-0.225729\pi\)
\(14\) 6.08291 + 4.41949i 1.62573 + 1.18116i
\(15\) 0 0
\(16\) 4.92308 15.1517i 1.23077 3.78792i
\(17\) 1.16845 3.59612i 0.283391 0.872187i −0.703486 0.710709i \(-0.748374\pi\)
0.986876 0.161477i \(-0.0516259\pi\)
\(18\) 0 0
\(19\) 3.43983 + 2.49918i 0.789151 + 0.573352i 0.907711 0.419595i \(-0.137828\pi\)
−0.118561 + 0.992947i \(0.537828\pi\)
\(20\) −1.72280 5.30222i −0.385229 1.18561i
\(21\) 0 0
\(22\) −6.14759 6.74782i −1.31067 1.43864i
\(23\) 1.37658 0.287038 0.143519 0.989648i \(-0.454158\pi\)
0.143519 + 0.989648i \(0.454158\pi\)
\(24\) 0 0
\(25\) −0.809017 0.587785i −0.161803 0.117557i
\(26\) −6.17856 + 4.48898i −1.21171 + 0.880362i
\(27\) 0 0
\(28\) 4.70645 14.4850i 0.889436 2.73740i
\(29\) 7.17384 5.21210i 1.33215 0.967862i 0.332454 0.943119i \(-0.392123\pi\)
0.999694 0.0247431i \(-0.00787676\pi\)
\(30\) 0 0
\(31\) 1.68946 + 5.19964i 0.303437 + 0.933883i 0.980256 + 0.197733i \(0.0633580\pi\)
−0.676819 + 0.736149i \(0.736642\pi\)
\(32\) −24.1685 −4.27243
\(33\) 0 0
\(34\) −10.4069 −1.78477
\(35\) −0.844194 2.59816i −0.142695 0.439169i
\(36\) 0 0
\(37\) 1.86189 1.35274i 0.306093 0.222389i −0.424125 0.905603i \(-0.639418\pi\)
0.730218 + 0.683214i \(0.239418\pi\)
\(38\) 3.61622 11.1296i 0.586629 1.80546i
\(39\) 0 0
\(40\) −7.96046 + 5.78361i −1.25866 + 0.914469i
\(41\) 6.97314 + 5.06629i 1.08902 + 0.791221i 0.979234 0.202734i \(-0.0649827\pi\)
0.109788 + 0.993955i \(0.464983\pi\)
\(42\) 0 0
\(43\) 12.3981 1.89069 0.945346 0.326070i \(-0.105724\pi\)
0.945346 + 0.326070i \(0.105724\pi\)
\(44\) −9.15144 + 16.0670i −1.37963 + 2.42219i
\(45\) 0 0
\(46\) −1.17079 3.60332i −0.172623 0.531280i
\(47\) −4.52496 3.28757i −0.660033 0.479542i 0.206641 0.978417i \(-0.433747\pi\)
−0.866674 + 0.498875i \(0.833747\pi\)
\(48\) 0 0
\(49\) 0.143108 0.440442i 0.0204440 0.0629202i
\(50\) −0.850504 + 2.61758i −0.120279 + 0.370182i
\(51\) 0 0
\(52\) 12.5154 + 9.09297i 1.73557 + 1.26097i
\(53\) 0.168046 + 0.517191i 0.0230828 + 0.0710417i 0.961934 0.273281i \(-0.0881087\pi\)
−0.938852 + 0.344322i \(0.888109\pi\)
\(54\) 0 0
\(55\) 0.365963 + 3.29637i 0.0493464 + 0.444483i
\(56\) −26.8807 −3.59208
\(57\) 0 0
\(58\) −19.7445 14.3452i −2.59258 1.88362i
\(59\) 0.314933 0.228812i 0.0410008 0.0297888i −0.567096 0.823652i \(-0.691933\pi\)
0.608097 + 0.793863i \(0.291933\pi\)
\(60\) 0 0
\(61\) −4.43173 + 13.6395i −0.567425 + 1.74635i 0.0932105 + 0.995646i \(0.470287\pi\)
−0.660635 + 0.750707i \(0.729713\pi\)
\(62\) 12.1736 8.84462i 1.54605 1.12327i
\(63\) 0 0
\(64\) 10.7092 + 32.9596i 1.33865 + 4.11996i
\(65\) 2.77482 0.344175
\(66\) 0 0
\(67\) 3.65454 0.446473 0.223237 0.974764i \(-0.428338\pi\)
0.223237 + 0.974764i \(0.428338\pi\)
\(68\) 6.51421 + 20.0487i 0.789964 + 2.43126i
\(69\) 0 0
\(70\) −6.08291 + 4.41949i −0.727047 + 0.528230i
\(71\) 2.83231 8.71697i 0.336134 1.03451i −0.630027 0.776573i \(-0.716956\pi\)
0.966161 0.257940i \(-0.0830438\pi\)
\(72\) 0 0
\(73\) −6.60178 + 4.79647i −0.772680 + 0.561385i −0.902773 0.430117i \(-0.858472\pi\)
0.130093 + 0.991502i \(0.458472\pi\)
\(74\) −5.12445 3.72313i −0.595706 0.432805i
\(75\) 0 0
\(76\) −23.7045 −2.71909
\(77\) −4.48433 + 7.87305i −0.511037 + 0.897218i
\(78\) 0 0
\(79\) −1.06521 3.27837i −0.119845 0.368845i 0.873082 0.487574i \(-0.162118\pi\)
−0.992927 + 0.118729i \(0.962118\pi\)
\(80\) 12.8888 + 9.36425i 1.44101 + 1.04695i
\(81\) 0 0
\(82\) 7.33073 22.5617i 0.809544 2.49152i
\(83\) 1.43839 4.42691i 0.157884 0.485916i −0.840558 0.541722i \(-0.817773\pi\)
0.998442 + 0.0558055i \(0.0177727\pi\)
\(84\) 0 0
\(85\) 3.05904 + 2.22252i 0.331800 + 0.241066i
\(86\) −10.5446 32.4530i −1.13706 3.49950i
\(87\) 0 0
\(88\) 31.9605 + 6.59832i 3.40700 + 0.703383i
\(89\) −6.62318 −0.702056 −0.351028 0.936365i \(-0.614168\pi\)
−0.351028 + 0.936365i \(0.614168\pi\)
\(90\) 0 0
\(91\) 6.13272 + 4.45568i 0.642884 + 0.467082i
\(92\) −6.20886 + 4.51100i −0.647318 + 0.470304i
\(93\) 0 0
\(94\) −4.75700 + 14.6405i −0.490647 + 1.51006i
\(95\) −3.43983 + 2.49918i −0.352919 + 0.256411i
\(96\) 0 0
\(97\) −5.12775 15.7816i −0.520645 1.60238i −0.772771 0.634685i \(-0.781130\pi\)
0.252126 0.967694i \(-0.418870\pi\)
\(98\) −1.27461 −0.128755
\(99\) 0 0
\(100\) 5.57509 0.557509
\(101\) −0.166576 0.512669i −0.0165749 0.0510124i 0.942427 0.334412i \(-0.108538\pi\)
−0.959002 + 0.283400i \(0.908538\pi\)
\(102\) 0 0
\(103\) 4.94360 3.59174i 0.487108 0.353905i −0.316963 0.948438i \(-0.602663\pi\)
0.804071 + 0.594533i \(0.202663\pi\)
\(104\) 8.43720 25.9670i 0.827335 2.54628i
\(105\) 0 0
\(106\) 1.21087 0.879746i 0.117610 0.0854485i
\(107\) 7.99070 + 5.80559i 0.772490 + 0.561247i 0.902716 0.430237i \(-0.141570\pi\)
−0.130225 + 0.991484i \(0.541570\pi\)
\(108\) 0 0
\(109\) −5.44683 −0.521712 −0.260856 0.965378i \(-0.584005\pi\)
−0.260856 + 0.965378i \(0.584005\pi\)
\(110\) 8.31727 3.76151i 0.793020 0.358646i
\(111\) 0 0
\(112\) 13.4492 + 41.3924i 1.27083 + 3.91121i
\(113\) 0.629096 + 0.457065i 0.0591804 + 0.0429971i 0.616982 0.786977i \(-0.288355\pi\)
−0.557802 + 0.829974i \(0.688355\pi\)
\(114\) 0 0
\(115\) −0.425388 + 1.30921i −0.0396676 + 0.122084i
\(116\) −15.2766 + 47.0167i −1.41840 + 4.36539i
\(117\) 0 0
\(118\) −0.866786 0.629757i −0.0797941 0.0579738i
\(119\) 3.19205 + 9.82412i 0.292615 + 0.900576i
\(120\) 0 0
\(121\) 7.26434 8.26011i 0.660394 0.750919i
\(122\) 39.4716 3.57359
\(123\) 0 0
\(124\) −24.6590 17.9158i −2.21445 1.60889i
\(125\) 0.809017 0.587785i 0.0723607 0.0525731i
\(126\) 0 0
\(127\) 1.33823 4.11865i 0.118749 0.365471i −0.873962 0.485995i \(-0.838457\pi\)
0.992710 + 0.120524i \(0.0384574\pi\)
\(128\) 38.0608 27.6528i 3.36413 2.44419i
\(129\) 0 0
\(130\) −2.36000 7.26333i −0.206986 0.637036i
\(131\) 11.7312 1.02496 0.512478 0.858700i \(-0.328728\pi\)
0.512478 + 0.858700i \(0.328728\pi\)
\(132\) 0 0
\(133\) −11.6155 −1.00719
\(134\) −3.10820 9.56606i −0.268508 0.826381i
\(135\) 0 0
\(136\) 30.0999 21.8689i 2.58105 1.87524i
\(137\) −4.19773 + 12.9193i −0.358636 + 1.10377i 0.595235 + 0.803552i \(0.297059\pi\)
−0.953871 + 0.300216i \(0.902941\pi\)
\(138\) 0 0
\(139\) 9.73424 7.07234i 0.825647 0.599868i −0.0926772 0.995696i \(-0.529542\pi\)
0.918325 + 0.395828i \(0.129542\pi\)
\(140\) 12.3217 + 8.95221i 1.04137 + 0.756600i
\(141\) 0 0
\(142\) −25.2263 −2.11694
\(143\) −6.19793 6.80308i −0.518297 0.568902i
\(144\) 0 0
\(145\) 2.74016 + 8.43335i 0.227558 + 0.700352i
\(146\) 18.1700 + 13.2013i 1.50376 + 1.09255i
\(147\) 0 0
\(148\) −3.96488 + 12.2026i −0.325911 + 1.00305i
\(149\) 4.26239 13.1183i 0.349188 1.07469i −0.610115 0.792313i \(-0.708877\pi\)
0.959303 0.282378i \(-0.0911234\pi\)
\(150\) 0 0
\(151\) 13.7584 + 9.99604i 1.11964 + 0.813466i 0.984154 0.177313i \(-0.0567405\pi\)
0.135486 + 0.990779i \(0.456741\pi\)
\(152\) 12.9283 + 39.7892i 1.04862 + 3.22733i
\(153\) 0 0
\(154\) 24.4223 + 5.04204i 1.96800 + 0.406299i
\(155\) −5.46722 −0.439138
\(156\) 0 0
\(157\) 2.92121 + 2.12238i 0.233138 + 0.169385i 0.698221 0.715883i \(-0.253975\pi\)
−0.465083 + 0.885267i \(0.653975\pi\)
\(158\) −7.67543 + 5.57652i −0.610624 + 0.443644i
\(159\) 0 0
\(160\) 7.46848 22.9856i 0.590435 1.81717i
\(161\) −3.04243 + 2.21045i −0.239777 + 0.174208i
\(162\) 0 0
\(163\) −1.11971 3.44612i −0.0877027 0.269921i 0.897581 0.440850i \(-0.145323\pi\)
−0.985283 + 0.170929i \(0.945323\pi\)
\(164\) −48.0532 −3.75233
\(165\) 0 0
\(166\) −12.8111 −0.994337
\(167\) −0.701987 2.16049i −0.0543214 0.167184i 0.920215 0.391413i \(-0.128014\pi\)
−0.974536 + 0.224229i \(0.928014\pi\)
\(168\) 0 0
\(169\) 4.28807 3.11547i 0.329852 0.239651i
\(170\) 3.21591 9.89755i 0.246649 0.759107i
\(171\) 0 0
\(172\) −55.9196 + 40.6280i −4.26383 + 3.09785i
\(173\) −15.5901 11.3269i −1.18530 0.861169i −0.192538 0.981290i \(-0.561672\pi\)
−0.992759 + 0.120121i \(0.961672\pi\)
\(174\) 0 0
\(175\) 2.73187 0.206510
\(176\) −5.83031 52.5159i −0.439476 3.95853i
\(177\) 0 0
\(178\) 5.63304 + 17.3367i 0.422214 + 1.29944i
\(179\) −5.88061 4.27251i −0.439537 0.319343i 0.345914 0.938266i \(-0.387569\pi\)
−0.785451 + 0.618924i \(0.787569\pi\)
\(180\) 0 0
\(181\) −2.50887 + 7.72150i −0.186483 + 0.573934i −0.999971 0.00764707i \(-0.997566\pi\)
0.813488 + 0.581581i \(0.197566\pi\)
\(182\) 6.44721 19.8425i 0.477899 1.47082i
\(183\) 0 0
\(184\) 10.9582 + 7.96162i 0.807852 + 0.586939i
\(185\) 0.711178 + 2.18878i 0.0522869 + 0.160922i
\(186\) 0 0
\(187\) −1.38377 12.4642i −0.101191 0.911471i
\(188\) 31.1823 2.27420
\(189\) 0 0
\(190\) 9.46740 + 6.87847i 0.686837 + 0.499016i
\(191\) −16.1974 + 11.7681i −1.17201 + 0.851512i −0.991248 0.132016i \(-0.957855\pi\)
−0.180758 + 0.983528i \(0.557855\pi\)
\(192\) 0 0
\(193\) −6.04819 + 18.6144i −0.435359 + 1.33990i 0.457360 + 0.889282i \(0.348795\pi\)
−0.892719 + 0.450614i \(0.851205\pi\)
\(194\) −36.9485 + 26.8446i −2.65274 + 1.92733i
\(195\) 0 0
\(196\) 0.797840 + 2.45550i 0.0569886 + 0.175393i
\(197\) −22.9044 −1.63187 −0.815937 0.578141i \(-0.803778\pi\)
−0.815937 + 0.578141i \(0.803778\pi\)
\(198\) 0 0
\(199\) −17.3671 −1.23112 −0.615560 0.788090i \(-0.711070\pi\)
−0.615560 + 0.788090i \(0.711070\pi\)
\(200\) −3.04062 9.35808i −0.215005 0.661716i
\(201\) 0 0
\(202\) −1.20028 + 0.872053i −0.0844513 + 0.0613574i
\(203\) −7.48576 + 23.0388i −0.525398 + 1.61701i
\(204\) 0 0
\(205\) −6.97314 + 5.06629i −0.487026 + 0.353845i
\(206\) −13.6062 9.88550i −0.947990 0.688755i
\(207\) 0 0
\(208\) −44.2069 −3.06520
\(209\) 13.8106 + 2.85123i 0.955298 + 0.197224i
\(210\) 0 0
\(211\) 5.13295 + 15.7976i 0.353367 + 1.08755i 0.956950 + 0.290252i \(0.0937391\pi\)
−0.603583 + 0.797300i \(0.706261\pi\)
\(212\) −2.45275 1.78203i −0.168456 0.122390i
\(213\) 0 0
\(214\) 8.40047 25.8540i 0.574244 1.76734i
\(215\) −3.83122 + 11.7913i −0.261287 + 0.804159i
\(216\) 0 0
\(217\) −12.0833 8.77901i −0.820266 0.595958i
\(218\) 4.63255 + 14.2575i 0.313756 + 0.965641i
\(219\) 0 0
\(220\) −12.4527 13.6685i −0.839559 0.921531i
\(221\) −10.4921 −0.705776
\(222\) 0 0
\(223\) 7.24917 + 5.26683i 0.485440 + 0.352693i 0.803428 0.595402i \(-0.203007\pi\)
−0.317988 + 0.948095i \(0.603007\pi\)
\(224\) 53.4155 38.8086i 3.56897 2.59301i
\(225\) 0 0
\(226\) 0.661356 2.03545i 0.0439928 0.135396i
\(227\) 0.858807 0.623960i 0.0570010 0.0414137i −0.558920 0.829222i \(-0.688784\pi\)
0.615921 + 0.787808i \(0.288784\pi\)
\(228\) 0 0
\(229\) −1.80884 5.56705i −0.119532 0.367881i 0.873334 0.487123i \(-0.161954\pi\)
−0.992865 + 0.119242i \(0.961954\pi\)
\(230\) 3.78875 0.249823
\(231\) 0 0
\(232\) 87.2518 5.72836
\(233\) −0.580093 1.78534i −0.0380031 0.116962i 0.930255 0.366913i \(-0.119585\pi\)
−0.968258 + 0.249951i \(0.919585\pi\)
\(234\) 0 0
\(235\) 4.52496 3.28757i 0.295176 0.214458i
\(236\) −0.670648 + 2.06404i −0.0436554 + 0.134358i
\(237\) 0 0
\(238\) 23.0006 16.7109i 1.49091 1.08321i
\(239\) 1.65086 + 1.19942i 0.106785 + 0.0775841i 0.639896 0.768461i \(-0.278977\pi\)
−0.533111 + 0.846045i \(0.678977\pi\)
\(240\) 0 0
\(241\) 15.3922 0.991500 0.495750 0.868465i \(-0.334893\pi\)
0.495750 + 0.868465i \(0.334893\pi\)
\(242\) −27.7999 11.9897i −1.78704 0.770729i
\(243\) 0 0
\(244\) −24.7073 76.0411i −1.58172 4.86804i
\(245\) 0.374662 + 0.272208i 0.0239363 + 0.0173907i
\(246\) 0 0
\(247\) 3.64584 11.2207i 0.231979 0.713958i
\(248\) −16.6238 + 51.1627i −1.05561 + 3.24883i
\(249\) 0 0
\(250\) −2.22665 1.61775i −0.140826 0.102316i
\(251\) −4.14616 12.7606i −0.261703 0.805439i −0.992435 0.122774i \(-0.960821\pi\)
0.730732 0.682665i \(-0.239179\pi\)
\(252\) 0 0
\(253\) 4.15996 1.88136i 0.261535 0.118280i
\(254\) −11.9191 −0.747869
\(255\) 0 0
\(256\) −48.6801 35.3681i −3.04250 2.21051i
\(257\) 7.77754 5.65071i 0.485150 0.352482i −0.318166 0.948035i \(-0.603067\pi\)
0.803316 + 0.595553i \(0.203067\pi\)
\(258\) 0 0
\(259\) −1.94285 + 5.97946i −0.120723 + 0.371546i
\(260\) −12.5154 + 9.09297i −0.776172 + 0.563922i
\(261\) 0 0
\(262\) −9.97740 30.7073i −0.616406 1.89710i
\(263\) 23.4178 1.44400 0.722002 0.691891i \(-0.243222\pi\)
0.722002 + 0.691891i \(0.243222\pi\)
\(264\) 0 0
\(265\) −0.543807 −0.0334058
\(266\) 9.87905 + 30.4046i 0.605723 + 1.86422i
\(267\) 0 0
\(268\) −16.4832 + 11.9758i −1.00687 + 0.731536i
\(269\) −2.92395 + 8.99899i −0.178276 + 0.548678i −0.999768 0.0215424i \(-0.993142\pi\)
0.821492 + 0.570221i \(0.193142\pi\)
\(270\) 0 0
\(271\) −20.6671 + 15.0155i −1.25544 + 0.912128i −0.998524 0.0543073i \(-0.982705\pi\)
−0.256912 + 0.966435i \(0.582705\pi\)
\(272\) −48.7348 35.4079i −2.95498 2.14692i
\(273\) 0 0
\(274\) 37.3874 2.25866
\(275\) −3.24813 0.670584i −0.195869 0.0404377i
\(276\) 0 0
\(277\) −1.43703 4.42272i −0.0863427 0.265736i 0.898558 0.438854i \(-0.144616\pi\)
−0.984901 + 0.173119i \(0.944616\pi\)
\(278\) −26.7914 19.4651i −1.60684 1.16744i
\(279\) 0 0
\(280\) 8.30658 25.5650i 0.496413 1.52780i
\(281\) −3.33872 + 10.2755i −0.199172 + 0.612987i 0.800731 + 0.599024i \(0.204445\pi\)
−0.999903 + 0.0139628i \(0.995555\pi\)
\(282\) 0 0
\(283\) −1.62343 1.17949i −0.0965028 0.0701134i 0.538487 0.842634i \(-0.318996\pi\)
−0.634990 + 0.772520i \(0.718996\pi\)
\(284\) 15.7904 + 48.5978i 0.936987 + 2.88375i
\(285\) 0 0
\(286\) −12.5362 + 22.0096i −0.741283 + 1.30146i
\(287\) −23.5467 −1.38992
\(288\) 0 0
\(289\) 2.18650 + 1.58859i 0.128618 + 0.0934462i
\(290\) 19.7445 14.3452i 1.15943 0.842379i
\(291\) 0 0
\(292\) 14.0584 43.2675i 0.822708 2.53204i
\(293\) −0.487479 + 0.354174i −0.0284788 + 0.0206911i −0.601934 0.798546i \(-0.705603\pi\)
0.573455 + 0.819237i \(0.305603\pi\)
\(294\) 0 0
\(295\) 0.120294 + 0.370226i 0.00700377 + 0.0215554i
\(296\) 22.6452 1.31623
\(297\) 0 0
\(298\) −37.9633 −2.19916
\(299\) −1.18038 3.63283i −0.0682629 0.210092i
\(300\) 0 0
\(301\) −27.4014 + 19.9083i −1.57939 + 1.14749i
\(302\) 14.4639 44.5153i 0.832304 2.56157i
\(303\) 0 0
\(304\) 54.8013 39.8155i 3.14307 2.28357i
\(305\) −11.6024 8.42965i −0.664352 0.482680i
\(306\) 0 0
\(307\) 30.7715 1.75622 0.878112 0.478454i \(-0.158803\pi\)
0.878112 + 0.478454i \(0.158803\pi\)
\(308\) −5.57376 50.2051i −0.317595 2.86070i
\(309\) 0 0
\(310\) 4.64989 + 14.3109i 0.264096 + 0.812804i
\(311\) −1.16730 0.848096i −0.0661917 0.0480911i 0.554197 0.832385i \(-0.313025\pi\)
−0.620389 + 0.784294i \(0.713025\pi\)
\(312\) 0 0
\(313\) 7.26167 22.3491i 0.410454 1.26325i −0.505801 0.862650i \(-0.668803\pi\)
0.916255 0.400596i \(-0.131197\pi\)
\(314\) 3.07101 9.45160i 0.173307 0.533384i
\(315\) 0 0
\(316\) 15.5475 + 11.2959i 0.874615 + 0.635445i
\(317\) 4.42454 + 13.6173i 0.248507 + 0.764825i 0.995040 + 0.0994767i \(0.0317169\pi\)
−0.746533 + 0.665348i \(0.768283\pi\)
\(318\) 0 0
\(319\) 14.5557 25.5551i 0.814960 1.43081i
\(320\) −34.6558 −1.93732
\(321\) 0 0
\(322\) 8.37363 + 6.08380i 0.466644 + 0.339037i
\(323\) 13.0066 9.44986i 0.723707 0.525804i
\(324\) 0 0
\(325\) −0.857468 + 2.63902i −0.0475638 + 0.146386i
\(326\) −8.06818 + 5.86188i −0.446855 + 0.324659i
\(327\) 0 0
\(328\) 26.2080 + 80.6599i 1.44709 + 4.45370i
\(329\) 15.2798 0.842400
\(330\) 0 0
\(331\) −4.93282 −0.271132 −0.135566 0.990768i \(-0.543285\pi\)
−0.135566 + 0.990768i \(0.543285\pi\)
\(332\) 8.01914 + 24.6804i 0.440108 + 1.35451i
\(333\) 0 0
\(334\) −5.05823 + 3.67502i −0.276774 + 0.201088i
\(335\) −1.12932 + 3.47567i −0.0617011 + 0.189896i
\(336\) 0 0
\(337\) −6.22343 + 4.52159i −0.339012 + 0.246306i −0.744245 0.667907i \(-0.767190\pi\)
0.405233 + 0.914213i \(0.367190\pi\)
\(338\) −11.8020 8.57466i −0.641944 0.466400i
\(339\) 0 0
\(340\) −21.0804 −1.14325
\(341\) 12.2118 + 13.4041i 0.661303 + 0.725871i
\(342\) 0 0
\(343\) −5.51840 16.9839i −0.297966 0.917045i
\(344\) 98.6945 + 71.7057i 5.32125 + 3.86611i
\(345\) 0 0
\(346\) −16.3896 + 50.4420i −0.881111 + 2.71178i
\(347\) −5.30460 + 16.3259i −0.284766 + 0.876420i 0.701703 + 0.712470i \(0.252424\pi\)
−0.986469 + 0.163950i \(0.947576\pi\)
\(348\) 0 0
\(349\) −19.6433 14.2717i −1.05148 0.763948i −0.0789902 0.996875i \(-0.525170\pi\)
−0.972494 + 0.232927i \(0.925170\pi\)
\(350\) −2.32346 7.15089i −0.124194 0.382231i
\(351\) 0 0
\(352\) −73.0359 + 33.0308i −3.89283 + 1.76055i
\(353\) 5.84602 0.311152 0.155576 0.987824i \(-0.450277\pi\)
0.155576 + 0.987824i \(0.450277\pi\)
\(354\) 0 0
\(355\) 7.41509 + 5.38738i 0.393552 + 0.285932i
\(356\) 29.8728 21.7038i 1.58325 1.15030i
\(357\) 0 0
\(358\) −6.18217 + 19.0268i −0.326738 + 1.00560i
\(359\) 6.58896 4.78716i 0.347752 0.252656i −0.400173 0.916439i \(-0.631050\pi\)
0.747925 + 0.663783i \(0.231050\pi\)
\(360\) 0 0
\(361\) −0.284813 0.876565i −0.0149902 0.0461350i
\(362\) 22.3454 1.17445
\(363\) 0 0
\(364\) −42.2617 −2.21512
\(365\) −2.52166 7.76086i −0.131989 0.406222i
\(366\) 0 0
\(367\) −18.3442 + 13.3279i −0.957561 + 0.695709i −0.952583 0.304279i \(-0.901585\pi\)
−0.00497831 + 0.999988i \(0.501585\pi\)
\(368\) 6.77703 20.8575i 0.353277 1.08727i
\(369\) 0 0
\(370\) 5.12445 3.72313i 0.266408 0.193556i
\(371\) −1.20188 0.873219i −0.0623987 0.0453353i
\(372\) 0 0
\(373\) −14.0566 −0.727825 −0.363913 0.931433i \(-0.618559\pi\)
−0.363913 + 0.931433i \(0.618559\pi\)
\(374\) −31.4491 + 14.2230i −1.62619 + 0.735452i
\(375\) 0 0
\(376\) −17.0067 52.3411i −0.877052 2.69929i
\(377\) −19.9061 14.4627i −1.02522 0.744865i
\(378\) 0 0
\(379\) −7.79252 + 23.9829i −0.400275 + 1.23192i 0.524502 + 0.851410i \(0.324252\pi\)
−0.924777 + 0.380511i \(0.875748\pi\)
\(380\) 7.32509 22.5443i 0.375769 1.15650i
\(381\) 0 0
\(382\) 44.5800 + 32.3893i 2.28091 + 1.65718i
\(383\) 7.58065 + 23.3308i 0.387353 + 1.19215i 0.934759 + 0.355283i \(0.115615\pi\)
−0.547406 + 0.836867i \(0.684385\pi\)
\(384\) 0 0
\(385\) −6.10198 6.69776i −0.310986 0.341349i
\(386\) 53.8688 2.74185
\(387\) 0 0
\(388\) 74.8435 + 54.3770i 3.79960 + 2.76057i
\(389\) 19.5464 14.2013i 0.991044 0.720035i 0.0308944 0.999523i \(-0.490164\pi\)
0.960149 + 0.279487i \(0.0901644\pi\)
\(390\) 0 0
\(391\) 1.60847 4.95036i 0.0813437 0.250350i
\(392\) 3.68655 2.67843i 0.186199 0.135281i
\(393\) 0 0
\(394\) 19.4803 + 59.9542i 0.981404 + 3.02045i
\(395\) 3.44708 0.173441
\(396\) 0 0
\(397\) −29.4680 −1.47896 −0.739479 0.673179i \(-0.764928\pi\)
−0.739479 + 0.673179i \(0.764928\pi\)
\(398\) 14.7708 + 45.4597i 0.740392 + 2.27869i
\(399\) 0 0
\(400\) −12.8888 + 9.36425i −0.644439 + 0.468212i
\(401\) 1.41465 4.35386i 0.0706444 0.217421i −0.909501 0.415702i \(-0.863536\pi\)
0.980145 + 0.198281i \(0.0635359\pi\)
\(402\) 0 0
\(403\) 12.2733 8.91705i 0.611375 0.444190i
\(404\) 2.43131 + 1.76645i 0.120962 + 0.0878840i
\(405\) 0 0
\(406\) 66.6726 3.30891
\(407\) 3.77776 6.63253i 0.187256 0.328762i
\(408\) 0 0
\(409\) −5.87483 18.0809i −0.290492 0.894041i −0.984699 0.174266i \(-0.944245\pi\)
0.694207 0.719775i \(-0.255755\pi\)
\(410\) 19.1921 + 13.9439i 0.947830 + 0.688639i
\(411\) 0 0
\(412\) −10.5274 + 32.3999i −0.518646 + 1.59623i
\(413\) −0.328627 + 1.01141i −0.0161707 + 0.0497682i
\(414\) 0 0
\(415\) 3.76575 + 2.73598i 0.184853 + 0.134304i
\(416\) 20.7237 + 63.7810i 1.01606 + 3.12712i
\(417\) 0 0
\(418\) −4.28263 38.5753i −0.209470 1.88678i
\(419\) 2.54104 0.124138 0.0620690 0.998072i \(-0.480230\pi\)
0.0620690 + 0.998072i \(0.480230\pi\)
\(420\) 0 0
\(421\) −1.66151 1.20716i −0.0809770 0.0588333i 0.546560 0.837420i \(-0.315937\pi\)
−0.627537 + 0.778587i \(0.715937\pi\)
\(422\) 36.9859 26.8718i 1.80045 1.30810i
\(423\) 0 0
\(424\) −1.65351 + 5.08899i −0.0803016 + 0.247143i
\(425\) −3.05904 + 2.22252i −0.148385 + 0.107808i
\(426\) 0 0
\(427\) −12.1069 37.2612i −0.585894 1.80320i
\(428\) −55.0654 −2.66169
\(429\) 0 0
\(430\) 34.1231 1.64556
\(431\) −11.7090 36.0366i −0.564003 1.73582i −0.670895 0.741552i \(-0.734090\pi\)
0.106892 0.994271i \(-0.465910\pi\)
\(432\) 0 0
\(433\) −7.36735 + 5.35269i −0.354052 + 0.257234i −0.750567 0.660794i \(-0.770220\pi\)
0.396515 + 0.918028i \(0.370220\pi\)
\(434\) −12.7029 + 39.0955i −0.609759 + 1.87664i
\(435\) 0 0
\(436\) 24.5670 17.8490i 1.17655 0.854812i
\(437\) 4.73521 + 3.44033i 0.226516 + 0.164573i
\(438\) 0 0
\(439\) 31.0675 1.48277 0.741385 0.671079i \(-0.234169\pi\)
0.741385 + 0.671079i \(0.234169\pi\)
\(440\) −16.1517 + 28.3572i −0.770002 + 1.35188i
\(441\) 0 0
\(442\) 8.92358 + 27.4640i 0.424452 + 1.30633i
\(443\) −12.0635 8.76465i −0.573155 0.416421i 0.263095 0.964770i \(-0.415257\pi\)
−0.836250 + 0.548349i \(0.815257\pi\)
\(444\) 0 0
\(445\) 2.04667 6.29902i 0.0970217 0.298602i
\(446\) 7.62091 23.4547i 0.360861 1.11061i
\(447\) 0 0
\(448\) −76.5938 55.6487i −3.61872 2.62915i
\(449\) −7.91389 24.3565i −0.373480 1.14945i −0.944499 0.328515i \(-0.893452\pi\)
0.571019 0.820937i \(-0.306548\pi\)
\(450\) 0 0
\(451\) 27.9965 + 5.77995i 1.31830 + 0.272167i
\(452\) −4.33522 −0.203911
\(453\) 0 0
\(454\) −2.36368 1.71732i −0.110933 0.0805976i
\(455\) −6.13272 + 4.45568i −0.287506 + 0.208886i
\(456\) 0 0
\(457\) 2.48022 7.63332i 0.116020 0.357072i −0.876139 0.482059i \(-0.839889\pi\)
0.992158 + 0.124987i \(0.0398891\pi\)
\(458\) −13.0338 + 9.46958i −0.609028 + 0.442485i
\(459\) 0 0
\(460\) −2.37157 7.29895i −0.110575 0.340315i
\(461\) −16.8858 −0.786449 −0.393225 0.919442i \(-0.628640\pi\)
−0.393225 + 0.919442i \(0.628640\pi\)
\(462\) 0 0
\(463\) −4.70959 −0.218873 −0.109437 0.993994i \(-0.534905\pi\)
−0.109437 + 0.993994i \(0.534905\pi\)
\(464\) −43.6547 134.355i −2.02662 6.23728i
\(465\) 0 0
\(466\) −4.17991 + 3.03688i −0.193630 + 0.140681i
\(467\) −4.76345 + 14.6604i −0.220426 + 0.678402i 0.778297 + 0.627896i \(0.216084\pi\)
−0.998724 + 0.0505066i \(0.983916\pi\)
\(468\) 0 0
\(469\) −8.07700 + 5.86829i −0.372961 + 0.270972i
\(470\) −12.4540 9.04834i −0.574459 0.417369i
\(471\) 0 0
\(472\) 3.83037 0.176307
\(473\) 37.4664 16.9443i 1.72271 0.779100i
\(474\) 0 0
\(475\) −1.31390 4.04376i −0.0602857 0.185540i
\(476\) −46.5904 33.8499i −2.13547 1.55151i
\(477\) 0 0
\(478\) 1.73552 5.34138i 0.0793808 0.244309i
\(479\) 3.04251 9.36388i 0.139016 0.427847i −0.857177 0.515022i \(-0.827784\pi\)
0.996193 + 0.0871750i \(0.0277839\pi\)
\(480\) 0 0
\(481\) −5.16642 3.75362i −0.235568 0.171150i
\(482\) −13.0911 40.2904i −0.596285 1.83518i
\(483\) 0 0
\(484\) −5.69662 + 61.0608i −0.258937 + 2.77549i
\(485\) 16.5938 0.753484
\(486\) 0 0
\(487\) 6.61144 + 4.80349i 0.299593 + 0.217667i 0.727418 0.686194i \(-0.240720\pi\)
−0.427825 + 0.903862i \(0.640720\pi\)
\(488\) −114.164 + 82.9449i −5.16796 + 3.75474i
\(489\) 0 0
\(490\) 0.393875 1.21222i 0.0177934 0.0547626i
\(491\) 31.2098 22.6752i 1.40848 1.02332i 0.414936 0.909851i \(-0.363804\pi\)
0.993542 0.113468i \(-0.0361959\pi\)
\(492\) 0 0
\(493\) −10.3611 31.8880i −0.466638 1.43617i
\(494\) −32.4720 −1.46098
\(495\) 0 0
\(496\) 87.1006 3.91093
\(497\) 7.73751 + 23.8136i 0.347075 + 1.06819i
\(498\) 0 0
\(499\) 1.90088 1.38107i 0.0850950 0.0618251i −0.544424 0.838810i \(-0.683252\pi\)
0.629519 + 0.776985i \(0.283252\pi\)
\(500\) −1.72280 + 5.30222i −0.0770458 + 0.237123i
\(501\) 0 0
\(502\) −29.8755 + 21.7058i −1.33341 + 0.968777i
\(503\) 5.13915 + 3.73381i 0.229143 + 0.166482i 0.696433 0.717622i \(-0.254769\pi\)
−0.467290 + 0.884104i \(0.654769\pi\)
\(504\) 0 0
\(505\) 0.539052 0.0239875
\(506\) −8.46267 9.28894i −0.376212 0.412944i
\(507\) 0 0
\(508\) 7.46075 + 22.9618i 0.331017 + 1.01877i
\(509\) 24.2744 + 17.6364i 1.07594 + 0.781719i 0.976971 0.213371i \(-0.0684444\pi\)
0.0989727 + 0.995090i \(0.468444\pi\)
\(510\) 0 0
\(511\) 6.88883 21.2016i 0.304744 0.937906i
\(512\) −22.1005 + 68.0184i −0.976714 + 3.00602i
\(513\) 0 0
\(514\) −21.4060 15.5524i −0.944179 0.685986i
\(515\) 1.88829 + 5.81156i 0.0832079 + 0.256088i
\(516\) 0 0
\(517\) −18.1673 3.75068i −0.798995 0.164955i
\(518\) 17.3041 0.760300
\(519\) 0 0
\(520\) 22.0889 + 16.0485i 0.968661 + 0.703773i
\(521\) −19.3706 + 14.0736i −0.848641 + 0.616574i −0.924771 0.380524i \(-0.875744\pi\)
0.0761299 + 0.997098i \(0.475744\pi\)
\(522\) 0 0
\(523\) −5.25118 + 16.1615i −0.229618 + 0.706692i 0.768172 + 0.640244i \(0.221167\pi\)
−0.997790 + 0.0664479i \(0.978833\pi\)
\(524\) −52.9115 + 38.4425i −2.31145 + 1.67937i
\(525\) 0 0
\(526\) −19.9169 61.2980i −0.868420 2.67272i
\(527\) 20.6726 0.900511
\(528\) 0 0
\(529\) −21.1050 −0.917609
\(530\) 0.462510 + 1.42346i 0.0200901 + 0.0618311i
\(531\) 0 0
\(532\) 52.3900 38.0635i 2.27139 1.65026i
\(533\) 7.39076 22.7464i 0.320129 0.985257i
\(534\) 0 0
\(535\) −7.99070 + 5.80559i −0.345468 + 0.250997i
\(536\) 29.0918 + 21.1364i 1.25657 + 0.912955i
\(537\) 0 0
\(538\) 26.0424 1.12277
\(539\) −0.169480 1.52658i −0.00730003 0.0657542i
\(540\) 0 0
\(541\) 0.384841 + 1.18442i 0.0165456 + 0.0509221i 0.958988 0.283445i \(-0.0914774\pi\)
−0.942443 + 0.334367i \(0.891477\pi\)
\(542\) 56.8818 + 41.3270i 2.44328 + 1.77515i
\(543\) 0 0
\(544\) −28.2397 + 86.9127i −1.21077 + 3.72635i
\(545\) 1.68316 5.18024i 0.0720988 0.221897i
\(546\) 0 0
\(547\) −6.24250 4.53544i −0.266910 0.193922i 0.446278 0.894895i \(-0.352749\pi\)
−0.713188 + 0.700973i \(0.752749\pi\)
\(548\) −23.4027 72.0261i −0.999713 3.07680i
\(549\) 0 0
\(550\) 1.00724 + 9.07256i 0.0429487 + 0.386855i
\(551\) 37.7027 1.60619
\(552\) 0 0
\(553\) 7.61848 + 5.53515i 0.323971 + 0.235379i
\(554\) −10.3546 + 7.52308i −0.439926 + 0.319625i
\(555\) 0 0
\(556\) −20.7290 + 63.7973i −0.879105 + 2.70561i
\(557\) 8.83599 6.41973i 0.374393 0.272013i −0.384637 0.923068i \(-0.625673\pi\)
0.759030 + 0.651055i \(0.225673\pi\)
\(558\) 0 0
\(559\) −10.6310 32.7188i −0.449642 1.38386i
\(560\) −43.5225 −1.83916
\(561\) 0 0
\(562\) 29.7366 1.25436
\(563\) −3.77104 11.6061i −0.158930 0.489137i 0.839608 0.543193i \(-0.182785\pi\)
−0.998538 + 0.0540564i \(0.982785\pi\)
\(564\) 0 0
\(565\) −0.629096 + 0.457065i −0.0264663 + 0.0192289i
\(566\) −1.70668 + 5.25262i −0.0717370 + 0.220784i
\(567\) 0 0
\(568\) 72.9620 53.0100i 3.06142 2.22425i
\(569\) 5.39492 + 3.91964i 0.226167 + 0.164320i 0.695098 0.718915i \(-0.255361\pi\)
−0.468931 + 0.883235i \(0.655361\pi\)
\(570\) 0 0
\(571\) −9.35392 −0.391450 −0.195725 0.980659i \(-0.562706\pi\)
−0.195725 + 0.980659i \(0.562706\pi\)
\(572\) 50.2481 + 10.3739i 2.10098 + 0.433753i
\(573\) 0 0
\(574\) 20.0266 + 61.6355i 0.835894 + 2.57262i
\(575\) −1.11368 0.809136i −0.0464436 0.0337433i
\(576\) 0 0
\(577\) −3.38517 + 10.4185i −0.140927 + 0.433727i −0.996465 0.0840124i \(-0.973226\pi\)
0.855538 + 0.517740i \(0.173226\pi\)
\(578\) 2.29862 7.07444i 0.0956102 0.294258i
\(579\) 0 0
\(580\) −39.9948 29.0579i −1.66069 1.20656i
\(581\) 3.92949 + 12.0937i 0.163023 + 0.501732i
\(582\) 0 0
\(583\) 1.21466 + 1.33326i 0.0503062 + 0.0552179i
\(584\) −80.2941 −3.32259
\(585\) 0 0
\(586\) 1.34168 + 0.974789i 0.0554244 + 0.0402682i
\(587\) −19.3936 + 14.0902i −0.800458 + 0.581567i −0.911048 0.412299i \(-0.864726\pi\)
0.110590 + 0.993866i \(0.464726\pi\)
\(588\) 0 0
\(589\) −7.18337 + 22.1081i −0.295986 + 0.910950i
\(590\) 0.866786 0.629757i 0.0356850 0.0259267i
\(591\) 0 0
\(592\) −11.3301 34.8704i −0.465663 1.43316i
\(593\) 2.17705 0.0894006 0.0447003 0.999000i \(-0.485767\pi\)
0.0447003 + 0.999000i \(0.485767\pi\)
\(594\) 0 0
\(595\) −10.3297 −0.423476
\(596\) 23.7632 + 73.1356i 0.973378 + 2.99575i
\(597\) 0 0
\(598\) −8.50530 + 6.17946i −0.347808 + 0.252697i
\(599\) 8.89601 27.3791i 0.363481 1.11868i −0.587446 0.809263i \(-0.699867\pi\)
0.950927 0.309416i \(-0.100133\pi\)
\(600\) 0 0
\(601\) 8.44390 6.13486i 0.344434 0.250246i −0.402096 0.915597i \(-0.631718\pi\)
0.746530 + 0.665351i \(0.231718\pi\)
\(602\) 75.4165 + 54.7933i 3.07375 + 2.23321i
\(603\) 0 0
\(604\) −94.8115 −3.85782
\(605\) 5.61103 + 9.46131i 0.228121 + 0.384657i
\(606\) 0 0
\(607\) 9.06265 + 27.8920i 0.367842 + 1.13210i 0.948182 + 0.317727i \(0.102919\pi\)
−0.580341 + 0.814374i \(0.697081\pi\)
\(608\) −83.1355 60.4015i −3.37159 2.44960i
\(609\) 0 0
\(610\) −12.1974 + 37.5397i −0.493858 + 1.51994i
\(611\) −4.79595 + 14.7604i −0.194023 + 0.597142i
\(612\) 0 0
\(613\) 22.3217 + 16.2176i 0.901563 + 0.655024i 0.938867 0.344280i \(-0.111877\pi\)
−0.0373040 + 0.999304i \(0.511877\pi\)
\(614\) −26.1713 80.5470i −1.05619 3.25061i
\(615\) 0 0
\(616\) −81.2320 + 36.7375i −3.27293 + 1.48019i
\(617\) −46.9079 −1.88844 −0.944220 0.329315i \(-0.893182\pi\)
−0.944220 + 0.329315i \(0.893182\pi\)
\(618\) 0 0
\(619\) 15.4577 + 11.2307i 0.621296 + 0.451398i 0.853374 0.521299i \(-0.174552\pi\)
−0.232078 + 0.972697i \(0.574552\pi\)
\(620\) 24.6590 17.9158i 0.990331 0.719517i
\(621\) 0 0
\(622\) −1.22716 + 3.77682i −0.0492048 + 0.151437i
\(623\) 14.6381 10.6352i 0.586462 0.426090i
\(624\) 0 0
\(625\) 0.309017 + 0.951057i 0.0123607 + 0.0380423i
\(626\) −64.6767 −2.58500
\(627\) 0 0
\(628\) −20.1306 −0.803298
\(629\) −2.68909 8.27618i −0.107221 0.329993i
\(630\) 0 0
\(631\) 24.9280 18.1112i 0.992368 0.720997i 0.0319295 0.999490i \(-0.489835\pi\)
0.960438 + 0.278493i \(0.0898348\pi\)
\(632\) 10.4813 32.2580i 0.416922 1.28316i
\(633\) 0 0
\(634\) 31.8814 23.1632i 1.26617 0.919927i
\(635\) 3.50353 + 2.54547i 0.139034 + 0.101014i
\(636\) 0 0
\(637\) −1.28504 −0.0509152
\(638\) −79.2721 16.3659i −3.13841 0.647933i
\(639\) 0 0
\(640\) 14.5379 + 44.7432i 0.574663 + 1.76863i
\(641\) −4.27097 3.10304i −0.168693 0.122563i 0.500235 0.865889i \(-0.333247\pi\)
−0.668929 + 0.743327i \(0.733247\pi\)
\(642\) 0 0
\(643\) −13.5247 + 41.6249i −0.533364 + 1.64152i 0.213795 + 0.976879i \(0.431418\pi\)
−0.747158 + 0.664646i \(0.768582\pi\)
\(644\) 6.47883 19.9398i 0.255302 0.785737i
\(645\) 0 0
\(646\) −35.7979 26.0087i −1.40845 1.02330i
\(647\) −9.70364 29.8647i −0.381489 1.17410i −0.938995 0.343930i \(-0.888242\pi\)
0.557506 0.830173i \(-0.311758\pi\)
\(648\) 0 0
\(649\) 0.638996 1.12187i 0.0250828 0.0440374i
\(650\) 7.63712 0.299552
\(651\) 0 0
\(652\) 16.3431 + 11.8739i 0.640044 + 0.465019i
\(653\) 26.0527 18.9284i 1.01952 0.740726i 0.0533374 0.998577i \(-0.483014\pi\)
0.966185 + 0.257850i \(0.0830141\pi\)
\(654\) 0 0
\(655\) −3.62513 + 11.1570i −0.141646 + 0.435940i
\(656\) 111.092 80.7131i 4.33742 3.15132i
\(657\) 0 0
\(658\) −12.9955 39.9960i −0.506617 1.55921i
\(659\) −20.7286 −0.807472 −0.403736 0.914875i \(-0.632289\pi\)
−0.403736 + 0.914875i \(0.632289\pi\)
\(660\) 0 0
\(661\) −43.6387 −1.69735 −0.848673 0.528917i \(-0.822598\pi\)
−0.848673 + 0.528917i \(0.822598\pi\)
\(662\) 4.19538 + 12.9121i 0.163058 + 0.501842i
\(663\) 0 0
\(664\) 37.0537 26.9211i 1.43796 1.04474i
\(665\) 3.58940 11.0470i 0.139191 0.428385i
\(666\) 0 0
\(667\) 9.87539 7.17489i 0.382377 0.277813i
\(668\) 10.2460 + 7.44419i 0.396431 + 0.288024i
\(669\) 0 0
\(670\) 10.0583 0.388588
\(671\) 5.24841 + 47.2745i 0.202613 + 1.82501i
\(672\) 0 0
\(673\) −8.88682 27.3508i −0.342562 1.05430i −0.962876 0.269944i \(-0.912995\pi\)
0.620314 0.784353i \(-0.287005\pi\)
\(674\) 17.1287 + 12.4447i 0.659772 + 0.479352i
\(675\) 0 0
\(676\) −9.13142 + 28.1036i −0.351208 + 1.08091i
\(677\) 4.31414 13.2776i 0.165806 0.510298i −0.833289 0.552838i \(-0.813545\pi\)
0.999095 + 0.0425397i \(0.0135449\pi\)
\(678\) 0 0
\(679\) 36.6743 + 26.6455i 1.40743 + 1.02256i
\(680\) 11.4971 + 35.3846i 0.440896 + 1.35694i
\(681\) 0 0
\(682\) 24.7001 43.3655i 0.945815 1.66055i
\(683\) −12.1334 −0.464272 −0.232136 0.972683i \(-0.574571\pi\)
−0.232136 + 0.972683i \(0.574571\pi\)
\(684\) 0 0
\(685\) −10.9898 7.98455i −0.419898 0.305074i
\(686\) −39.7633 + 28.8897i −1.51817 + 1.10302i
\(687\) 0 0
\(688\) 61.0368 187.852i 2.32700 7.16178i
\(689\) 1.22078 0.886950i 0.0465081 0.0337901i
\(690\) 0 0
\(691\) −7.41129 22.8096i −0.281939 0.867719i −0.987300 0.158870i \(-0.949215\pi\)
0.705361 0.708849i \(-0.250785\pi\)
\(692\) 107.435 4.08405
\(693\) 0 0
\(694\) 47.2459 1.79343
\(695\) 3.71815 + 11.4433i 0.141037 + 0.434068i
\(696\) 0 0
\(697\) 26.3667 19.1565i 0.998711 0.725606i
\(698\) −20.6507 + 63.5562i −0.781639 + 2.40564i
\(699\) 0 0
\(700\) −12.3217 + 8.95221i −0.465715 + 0.338362i
\(701\) −34.5576 25.1075i −1.30522 0.948298i −0.305229 0.952279i \(-0.598733\pi\)
−0.999992 + 0.00398054i \(0.998733\pi\)
\(702\) 0 0
\(703\) 9.78532 0.369060
\(704\) 77.4083 + 84.9661i 2.91743 + 3.20228i
\(705\) 0 0
\(706\) −4.97206 15.3024i −0.187126 0.575914i
\(707\) 1.19137 + 0.865583i 0.0448062 + 0.0325536i
\(708\) 0 0
\(709\) −1.28091 + 3.94224i −0.0481057 + 0.148054i −0.972224 0.234052i \(-0.924801\pi\)
0.924118 + 0.382106i \(0.124801\pi\)
\(710\) 7.79534 23.9916i 0.292554 0.900388i
\(711\) 0 0
\(712\) −52.7235 38.3059i −1.97590 1.43557i
\(713\) 2.32569 + 7.15774i 0.0870978 + 0.268059i
\(714\) 0 0
\(715\) 8.38538 3.79232i 0.313595 0.141825i
\(716\) 40.5244 1.51447
\(717\) 0 0
\(718\) −18.1347 13.1756i −0.676781 0.491710i
\(719\) 21.3040 15.4783i 0.794505 0.577241i −0.114792 0.993390i \(-0.536620\pi\)
0.909297 + 0.416148i \(0.136620\pi\)
\(720\) 0 0
\(721\) −5.15856 + 15.8764i −0.192115 + 0.591268i
\(722\) −2.05224 + 1.49104i −0.0763766 + 0.0554909i
\(723\) 0 0
\(724\) −13.9871 43.0480i −0.519828 1.59987i
\(725\) −8.86735 −0.329325
\(726\) 0 0
\(727\) 14.3772 0.533220 0.266610 0.963804i \(-0.414096\pi\)
0.266610 + 0.963804i \(0.414096\pi\)
\(728\) 23.0493 + 70.9385i 0.854265 + 2.62916i
\(729\) 0 0
\(730\) −18.1700 + 13.2013i −0.672502 + 0.488601i
\(731\) 14.4865 44.5850i 0.535804 1.64904i
\(732\) 0 0
\(733\) −27.8882 + 20.2620i −1.03007 + 0.748393i −0.968324 0.249699i \(-0.919668\pi\)
−0.0617509 + 0.998092i \(0.519668\pi\)
\(734\) 50.4886 + 36.6821i 1.86357 + 1.35396i
\(735\) 0 0
\(736\) −33.2700 −1.22635
\(737\) 11.0438 4.99461i 0.406805 0.183979i
\(738\) 0 0
\(739\) −1.55016 4.77090i −0.0570235 0.175500i 0.918488 0.395449i \(-0.129411\pi\)
−0.975511 + 0.219949i \(0.929411\pi\)
\(740\) −10.3802 7.54165i −0.381583 0.277237i
\(741\) 0 0
\(742\) −1.26352 + 3.88870i −0.0463851 + 0.142759i
\(743\) −11.9473 + 36.7700i −0.438303 + 1.34896i 0.451360 + 0.892342i \(0.350939\pi\)
−0.889663 + 0.456617i \(0.849061\pi\)
\(744\) 0 0
\(745\) 11.1591 + 8.10754i 0.408837 + 0.297037i
\(746\) 11.9552 + 36.7944i 0.437712 + 1.34714i
\(747\) 0 0
\(748\) 47.0858 + 51.6831i 1.72163 + 1.88972i
\(749\) −26.9828 −0.985930
\(750\) 0 0
\(751\) 4.20753 + 3.05695i 0.153535 + 0.111550i 0.661901 0.749592i \(-0.269750\pi\)
−0.508365 + 0.861141i \(0.669750\pi\)
\(752\) −72.0889 + 52.3757i −2.62881 + 1.90994i
\(753\) 0 0
\(754\) −20.9269 + 64.4065i −0.762114 + 2.34555i
\(755\) −13.7584 + 9.99604i −0.500718 + 0.363793i
\(756\) 0 0
\(757\) 1.91394 + 5.89049i 0.0695632 + 0.214093i 0.979795 0.200007i \(-0.0640964\pi\)
−0.910231 + 0.414100i \(0.864096\pi\)
\(758\) 69.4048 2.52090
\(759\) 0 0
\(760\) −41.8369 −1.51758
\(761\) 3.65297 + 11.2427i 0.132420 + 0.407547i 0.995180 0.0980670i \(-0.0312659\pi\)
−0.862760 + 0.505614i \(0.831266\pi\)
\(762\) 0 0
\(763\) 12.0382 8.74626i 0.435812 0.316636i
\(764\) 34.4923 106.156i 1.24789 3.84061i
\(765\) 0 0
\(766\) 54.6230 39.6859i 1.97361 1.43391i
\(767\) −0.873884 0.634914i −0.0315541 0.0229254i
\(768\) 0 0
\(769\) 2.73424 0.0985992 0.0492996 0.998784i \(-0.484301\pi\)
0.0492996 + 0.998784i \(0.484301\pi\)
\(770\) −12.3422 + 21.6689i −0.444781 + 0.780893i
\(771\) 0 0
\(772\) −33.7192 103.777i −1.21358 3.73502i
\(773\) −1.24618 0.905406i −0.0448221 0.0325652i 0.565149 0.824989i \(-0.308819\pi\)
−0.609971 + 0.792424i \(0.708819\pi\)
\(774\) 0 0
\(775\) 1.68946 5.19964i 0.0606874 0.186777i
\(776\) 50.4554 155.286i 1.81124 5.57443i
\(777\) 0 0
\(778\) −53.7974 39.0861i −1.92873 1.40131i
\(779\) 11.3249 + 34.8543i 0.405755 + 1.24879i
\(780\) 0 0
\(781\) −3.35426 30.2131i −0.120025 1.08111i
\(782\) −14.3260 −0.512296
\(783\) 0 0
\(784\) −5.96889 4.33665i −0.213175 0.154881i
\(785\) −2.92121 + 2.12238i −0.104262 + 0.0757511i
\(786\)