Properties

Label 49.7.f
Level $49$
Weight $7$
Character orbit 49.f
Rep. character $\chi_{49}(6,\cdot)$
Character field $\Q(\zeta_{14})$
Dimension $162$
Newform subspaces $1$
Sturm bound $32$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 49 = 7^{2} \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 49.f (of order \(14\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 49 \)
Character field: \(\Q(\zeta_{14})\)
Newform subspaces: \( 1 \)
Sturm bound: \(32\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{7}(49, [\chi])\).

Total New Old
Modular forms 174 174 0
Cusp forms 162 162 0
Eisenstein series 12 12 0

Trace form

\( 162 q - 5 q^{2} - 7 q^{3} - 837 q^{4} - 7 q^{5} - 791 q^{6} + 70 q^{7} - 843 q^{8} + 2990 q^{9} - 7 q^{10} + 1171 q^{11} - 13482 q^{12} - 7 q^{13} + 22533 q^{14} + 6181 q^{15} - 17901 q^{16} - 3143 q^{17}+ \cdots + 4449580 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{7}^{\mathrm{new}}(49, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
49.7.f.a 49.f 49.f $162$ $11.273$ None 49.7.f.a \(-5\) \(-7\) \(-7\) \(70\) $\mathrm{SU}(2)[C_{14}]$