Defining parameters
| Level: | \( N \) | \(=\) | \( 480 = 2^{5} \cdot 3 \cdot 5 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 480.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 18 \) | ||
| Sturm bound: | \(384\) | ||
| Trace bound: | \(7\) | ||
| Distinguishing \(T_p\): | \(7\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(480))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 304 | 24 | 280 |
| Cusp forms | 272 | 24 | 248 |
| Eisenstein series | 32 | 0 | 32 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(5\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(41\) | \(3\) | \(38\) | \(37\) | \(3\) | \(34\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(37\) | \(3\) | \(34\) | \(33\) | \(3\) | \(30\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(35\) | \(2\) | \(33\) | \(31\) | \(2\) | \(29\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(39\) | \(4\) | \(35\) | \(35\) | \(4\) | \(31\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(37\) | \(3\) | \(34\) | \(33\) | \(3\) | \(30\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(37\) | \(3\) | \(34\) | \(33\) | \(3\) | \(30\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(39\) | \(4\) | \(35\) | \(35\) | \(4\) | \(31\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(39\) | \(2\) | \(37\) | \(35\) | \(2\) | \(33\) | \(4\) | \(0\) | \(4\) | |||
| Plus space | \(+\) | \(156\) | \(14\) | \(142\) | \(140\) | \(14\) | \(126\) | \(16\) | \(0\) | \(16\) | |||||
| Minus space | \(-\) | \(148\) | \(10\) | \(138\) | \(132\) | \(10\) | \(122\) | \(16\) | \(0\) | \(16\) | |||||
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(480))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(480))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(480)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(60))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(96))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(120))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(160))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(240))\)\(^{\oplus 2}\)