Properties

Label 47600.2.a.bd
Level 4760047600
Weight 22
Character orbit 47600.a
Self dual yes
Analytic conductor 380.088380.088
Dimension 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [47600,2,Mod(1,47600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(47600, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("47600.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 47600=2452717 47600 = 2^{4} \cdot 5^{2} \cdot 7 \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 47600.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,1,0,0,0,1,0,-2,0,-6,0,7,0,0,0,-1,0,-5,0,1,0,6,0,0,0,-5,0, 3,0,-5,0,-6,0,0,0,-2,0,7,0,-6,0,8,0,0,0,3,0,1,0,-1,0,3,0,0,0,-5,0,3,0, -1,0,-2,0,0,0,8,0,6,0,-15,0,13,0,0,0,-6,0,4,0,1,0,-6,0,0,0,3,0,-15,0,7, 0,-5,0,0,0,-17,0,12,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 380.087913621380.087913621
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: not computed
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+q3+q72q96q11+7q13q175q19+q21+6q235q27+3q295q316q332q37+7q396q41+8q43+3q47+q49++12q99+O(q100) q + q^{3} + q^{7} - 2 q^{9} - 6 q^{11} + 7 q^{13} - q^{17} - 5 q^{19} + q^{21} + 6 q^{23} - 5 q^{27} + 3 q^{29} - 5 q^{31} - 6 q^{33} - 2 q^{37} + 7 q^{39} - 6 q^{41} + 8 q^{43} + 3 q^{47} + q^{49}+ \cdots + 12 q^{99}+O(q^{100}) Copy content Toggle raw display

Atkin-Lehner signs

p p Sign
22 1 -1
55 +1 +1
77 1 -1
1717 +1 +1

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.