Properties

Label 47424.2.a.by
Level $47424$
Weight $2$
Character orbit 47424.a
Self dual yes
Analytic conductor $378.683$
Dimension $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [47424,2,Mod(1,47424)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("47424.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(47424, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 47424 = 2^{6} \cdot 3 \cdot 13 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 47424.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,1,0,-3,0,-3,0,1,0,-4,0,-1,0,-3,0,-6,0,1,0,-3,0,7,0,4,0,1, 0,-6,0,2,0,-4,0,9,0,-3,0,-1,0,2,0,-8,0,-3,0,12,0,2,0,-6,0,1,0,12,0,1,0, -13,0,15,0,-3,0,3,0,-10,0,7,0,3,0,-4,0,4,0,12,0,1,0,1,0,14,0,18,0,-6,0, -6,0,3,0,2,0,-3,0,13,0,-4,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(378.682546546\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: not computed
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{3} - 3 q^{5} - 3 q^{7} + q^{9} - 4 q^{11} - q^{13} - 3 q^{15} - 6 q^{17} + q^{19} - 3 q^{21} + 7 q^{23} + 4 q^{25} + q^{27} - 6 q^{29} + 2 q^{31} - 4 q^{33} + 9 q^{35} - 3 q^{37} - q^{39}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(13\) \( +1 \)
\(19\) \( -1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.