Properties

Label 473.2.a
Level $473$
Weight $2$
Character orbit 473.a
Rep. character $\chi_{473}(1,\cdot)$
Character field $\Q$
Dimension $35$
Newform subspaces $7$
Sturm bound $88$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 473 = 11 \cdot 43 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 473.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 7 \)
Sturm bound: \(88\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(473))\).

Total New Old
Modular forms 46 35 11
Cusp forms 43 35 8
Eisenstein series 3 0 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(11\)\(43\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(9\)\(8\)\(1\)\(9\)\(8\)\(1\)\(0\)\(0\)\(0\)
\(+\)\(-\)\(-\)\(14\)\(11\)\(3\)\(13\)\(11\)\(2\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(12\)\(9\)\(3\)\(11\)\(9\)\(2\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(11\)\(7\)\(4\)\(10\)\(7\)\(3\)\(1\)\(0\)\(1\)
Plus space\(+\)\(20\)\(15\)\(5\)\(19\)\(15\)\(4\)\(1\)\(0\)\(1\)
Minus space\(-\)\(26\)\(20\)\(6\)\(24\)\(20\)\(4\)\(2\)\(0\)\(2\)

Trace form

\( 35 q + q^{2} + 2 q^{3} + 31 q^{4} - 4 q^{5} - 8 q^{6} + 8 q^{7} - 15 q^{8} + 41 q^{9} - 14 q^{10} - 3 q^{11} - 12 q^{12} - 2 q^{13} - 16 q^{14} - 22 q^{15} + 35 q^{16} - 14 q^{17} - 19 q^{18} + 2 q^{20}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(473))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 11 43
473.2.a.a 473.a 1.a $1$ $3.777$ \(\Q\) None 473.2.a.a \(-2\) \(1\) \(-1\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+q^{3}+2q^{4}-q^{5}-2q^{6}-2q^{9}+\cdots\)
473.2.a.b 473.a 1.a $2$ $3.777$ \(\Q(\sqrt{5}) \) None 473.2.a.b \(1\) \(-4\) \(2\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}-2q^{3}+(-1+\beta )q^{4}+(2-2\beta )q^{5}+\cdots\)
473.2.a.c 473.a 1.a $2$ $3.777$ \(\Q(\sqrt{5}) \) None 473.2.a.c \(1\) \(-2\) \(2\) \(-4\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}-2\beta q^{3}+(-1+\beta )q^{4}+2\beta q^{5}+\cdots\)
473.2.a.d 473.a 1.a $5$ $3.777$ 5.5.173513.1 None 473.2.a.d \(-3\) \(-1\) \(-4\) \(-9\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{3})q^{2}+(-1+\beta _{1}-\beta _{4})q^{3}+\cdots\)
473.2.a.e 473.a 1.a $5$ $3.777$ 5.5.38569.1 None 473.2.a.e \(1\) \(-3\) \(-6\) \(-15\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(\beta _{1}+\beta _{3})q^{2}+(-1-\beta _{2}-\beta _{4})q^{3}+\cdots\)
473.2.a.f 473.a 1.a $9$ $3.777$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 473.2.a.f \(4\) \(5\) \(0\) \(19\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{4})q^{3}+(1+\beta _{2}-\beta _{3}+\cdots)q^{4}+\cdots\)
473.2.a.g 473.a 1.a $11$ $3.777$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None 473.2.a.g \(-1\) \(6\) \(3\) \(17\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1-\beta _{8})q^{3}+(1+\beta _{2})q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(473))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(473)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(43))\)\(^{\oplus 2}\)